Пример #1
0
        /// <summary>
        /// Creates a multi-dimensional Wishart with given shape and with
        /// a rate matrix which is set to a scaled identity matrix
        /// </summary>
        /// <param name="dimension">The dimension</param>
        /// <param name="shape">The shape parameter</param>
        /// <param name="rate">Used to scale the identity matrix</param>
        /// <returns>A new Wishart distribution</returns>
        public static Wishart FromShapeAndRate(int dimension, double shape, double rate)
        {
            //return FromShapeAndRate(shape, PositiveDefiniteMatrix.IdentityScaledBy(dimension,rate));
            Wishart result = new Wishart(dimension);

            result.Shape = shape;
            result.Rate.SetToIdentityScaledBy(rate);
            return(result);
        }
Пример #2
0
        /// <summary>
        /// Override of the Equals method
        /// </summary>
        /// <param name="thatd">The instance to compare to</param>
        /// <returns>True if the two distributions are the same in value, false otherwise</returns>
        /// <exclude/>
        public override bool Equals(object thatd)
        {
            Wishart that = thatd as Wishart;

            if (that == null)
            {
                return(false);
            }
            return(MaxDiff(that) == 0.0);
        }
Пример #3
0
 /// <summary>
 /// Sets this Wishart instance to have the parameter values of another Wishart instance
 /// </summary>
 /// <param name="that">The other Wishart</param>
 public void SetTo(Wishart that)
 {
     if (object.ReferenceEquals(that, null))
     {
         SetToUniform();
     }
     else
     {
         rate.SetTo(that.rate);
         shape = that.shape;
     }
 }
Пример #4
0
 /// <summary>
 /// Sets the parameters to represent the product of two Wisharts.
 /// </summary>
 /// <param name="g1">The first Wishart. May refer to <c>this</c>.</param>
 /// <param name="g2">The second Wishart. May refer to <c>this</c>.</param>
 /// <remarks>
 /// The result may not be proper. No error is thrown in this case.
 /// </remarks>
 public void SetToProduct(Wishart g1, Wishart g2)
 {
     if (g1.IsPointMass)
     {
         Point = g1.Point;
         return;
     }
     if (g2.IsPointMass)
     {
         Point = g2.Point;
         return;
     }
     shape = g1.shape + g2.shape - 0.5 * (Dimension + 1);
     rate.SetToSum(g1.rate, g2.rate);
 }
Пример #5
0
        /// <summary>
        /// The maximum difference between the parameters of this Wishart
        /// and that Wishart
        /// </summary>
        /// <param name="thatd">That Wishart</param>
        /// <returns>The maximum difference</returns>
        public double MaxDiff(object thatd)
        {
            Wishart that = thatd as Wishart;

            if (that == null)
            {
                return(Double.PositiveInfinity);
            }
            double max  = rate.MaxDiff(that.rate);
            double diff = MMath.AbsDiff(shape, that.shape);

            if (diff > max)
            {
                max = diff;
            }
            return(max);
        }
Пример #6
0
 /// <summary>
 /// Gets the log-integral of the product of this Wishart with another Wishart
 /// </summary>
 /// <param name="that">The other Wishart</param>
 /// <returns>The log inner product</returns>
 public double GetLogAverageOf(Wishart that)
 {
     if (IsPointMass)
     {
         return(that.GetLogProb(Point));
     }
     else if (that.IsPointMass)
     {
         return(GetLogProb(that.Point));
     }
     else
     {
         Wishart product = this * that;
         //if (!product.IsProper()) throw new ArgumentException("The product is improper.");
         return(product.GetLogNormalizer() - this.GetLogNormalizer() - that.GetLogNormalizer());
     }
 }
Пример #7
0
 /// <summary>
 /// Get the integral of this distribution times another distribution raised to a power.
 /// </summary>
 /// <param name="that"></param>
 /// <param name="power"></param>
 /// <returns></returns>
 public double GetLogAverageOfPower(Wishart that, double power)
 {
     if (IsPointMass)
     {
         return(power * that.GetLogProb(Point));
     }
     else if (that.IsPointMass)
     {
         if (power < 0)
         {
             throw new DivideByZeroException("The exponent is negative and the distribution is a point mass");
         }
         return(this.GetLogProb(that.Point));
     }
     else
     {
         var product = this * (that ^ power);
         return(product.GetLogNormalizer() - this.GetLogNormalizer() - power * that.GetLogNormalizer());
     }
 }
Пример #8
0
 /// <summary>
 /// The expected logarithm of that distribution under this distribution.
 /// </summary>
 /// <param name="that">The distribution to take the logarithm of.</param>
 /// <returns><c>sum_x this.Evaluate(x)*Math.Log(that.Evaluate(x))</c></returns>
 /// <remarks>This is also known as the cross entropy.</remarks>
 public double GetAverageLog(Wishart that)
 {
     if (that.IsPointMass)
     {
         if (this.IsPointMass && (this.Point == that.Point))
         {
             return(0.0);
         }
         else
         {
             return(Double.NegativeInfinity);
         }
     }
     else
     {
         // that is not a point mass.
         double result = (that.Shape - 0.5 * (that.Dimension + 1)) * this.GetMeanLogDeterminant();
         result -= Matrix.TraceOfProduct(this.GetMean(), that.Rate);
         result -= that.GetLogNormalizer();
         return(result);
     }
 }
Пример #9
0
        public static double ProbEqualLn(IEnumerable <Wishart> dists)
        {
            // are any of them point masses?
            PositiveDefiniteMatrix point = null;

            foreach (Wishart dist in dists)
            {
                if (dist.IsPointMass)
                {
                    point = dist.Point;
                    break;
                }
            }
            if (point != null)
            {
                // one is a point mass
                double sum = 0.0;
                foreach (Wishart dist in dists)
                {
                    sum += dist.EvaluateLn(point);
                }
                return(sum);
            }
            else
            {
                double sum       = 0.0;
                int    dimension = 0;
                foreach (Wishart dist in dists)
                {
                    dimension = dist.Dimension;
                    sum      += dist.Normalizer();
                }
                Wishart prod = new Wishart(dimension);
                Util.SetToProduct(prod, dists);
                sum -= prod.Normalizer();
                return(sum);
            }
        }
Пример #10
0
 /// <summary>
 /// Weighted mixture distribution for two Wisharts
 /// </summary>
 /// <param name="weight1">First weight</param>
 /// <param name="dist1">First Wishart</param>
 /// <param name="weight2">Second weight</param>
 /// <param name="dist2">Second Wishart</param>
 public void SetToSum(double weight1, Wishart dist1, double weight2, Wishart dist2)
 {
     SetTo(WeightedSum <Wishart>(this, Dimension, weight1, dist1, weight2, dist2));
 }