Пример #1
0
        /// <summary>
        /// LightGbm <see cref="BinaryClassificationContext"/> extension method.
        /// </summary>
        /// <param name="ctx">The <see cref="BinaryClassificationContext"/>.</param>
        /// <param name="label">The label column.</param>
        /// <param name="features">The features colum.</param>
        /// <param name="weights">The weights column.</param>
        /// <param name="numLeaves">The number of leaves to use.</param>
        /// <param name="numBoostRound">Number of iterations.</param>
        /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
        /// <param name="learningRate">The learning rate.</param>
        /// <param name="advancedSettings">Algorithm advanced settings.</param>
        /// <param name="onFit">A delegate that is called every time the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive
        /// the linear model that was trained. Note that this action cannot change the result in any way;
        /// it is only a way for the caller to be informed about what was learnt.</param>
        /// <returns>The set of output columns including in order the predicted binary classification score (which will range
        /// from negative to positive infinity), the calibrated prediction (from 0 to 1), and the predicted label.</returns>
        public static (Scalar <float> score, Scalar <float> probability, Scalar <bool> predictedLabel) LightGbm(this BinaryClassificationContext.BinaryClassificationTrainers ctx,
                                                                                                                Scalar <bool> label, Vector <float> features, Scalar <float> weights = null,
                                                                                                                int?numLeaves       = null,
                                                                                                                int?minDataPerLeaf  = null,
                                                                                                                double?learningRate = null,
                                                                                                                int numBoostRound   = LightGbmArguments.Defaults.NumBoostRound,
                                                                                                                Action <LightGbmArguments> advancedSettings          = null,
                                                                                                                Action <IPredictorWithFeatureWeights <float> > onFit = null)
        {
            LightGbmStaticsUtils.CheckUserValues(label, features, weights, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings, onFit);

            var rec = new TrainerEstimatorReconciler.BinaryClassifier(
                (env, labelName, featuresName, weightsName) =>
            {
                var trainer = new LightGbmBinaryTrainer(env, labelName, featuresName, weightsName, numLeaves,
                                                        minDataPerLeaf, learningRate, numBoostRound, advancedSettings);

                if (onFit != null)
                {
                    return(trainer.WithOnFitDelegate(trans => onFit(trans.Model)));
                }
                else
                {
                    return(trainer);
                }
            }, label, features, weights);

            return(rec.Output);
        }
Пример #2
0
        /// <summary>
        /// LightGbm <see cref="RegressionContext"/> extension method.
        /// </summary>
        /// <param name="ctx">The <see cref="RegressionContext"/>.</param>
        /// <param name="label">The label column.</param>
        /// <param name="features">The features colum.</param>
        /// <param name="weights">The weights column.</param>
        /// <param name="numLeaves">The number of leaves to use.</param>
        /// <param name="numBoostRound">Number of iterations.</param>
        /// <param name="minDataPerLeaf">The minimal number of documents allowed in a leaf of the tree, out of the subsampled data.</param>
        /// <param name="learningRate">The learning rate.</param>
        /// <param name="advancedSettings">Algorithm advanced settings.</param>
        /// <param name="onFit">A delegate that is called every time the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}.Fit(DataView{TInShape})"/> method is called on the
        /// <see cref="Estimator{TInShape, TOutShape, TTransformer}"/> instance created out of this. This delegate will receive
        /// the linear model that was trained. Note that this action cannot change the result in any way;
        /// it is only a way for the caller to be informed about what was learnt.</param>
        /// <returns>The Score output column indicating the predicted value.</returns>
        public static Scalar <float> LightGbm(this RegressionContext.RegressionTrainers ctx,
                                              Scalar <float> label, Vector <float> features, Scalar <float> weights = null,
                                              int?numLeaves       = null,
                                              int?minDataPerLeaf  = null,
                                              double?learningRate = null,
                                              int numBoostRound   = LightGbmArguments.Defaults.NumBoostRound,
                                              Action <LightGbmArguments> advancedSettings = null,
                                              Action <LightGbmRegressionPredictor> onFit  = null)
        {
            LightGbmStaticsUtils.CheckUserValues(label, features, weights, numLeaves, minDataPerLeaf, learningRate, numBoostRound, advancedSettings, onFit);

            var rec = new TrainerEstimatorReconciler.Regression(
                (env, labelName, featuresName, weightsName) =>
            {
                var trainer = new LightGbmRegressorTrainer(env, labelName, featuresName, weightsName, numLeaves,
                                                           minDataPerLeaf, learningRate, numBoostRound, advancedSettings);
                if (onFit != null)
                {
                    return(trainer.WithOnFitDelegate(trans => onFit(trans.Model)));
                }
                return(trainer);
            }, label, features, weights);

            return(rec.Score);
        }