/// <summary>
        /// Add two positive-definite matrices.
        /// </summary>
        /// <param name="a">First matrix.</param>
        /// <param name="b">Second matrix.</param>
        /// <returns>Their sum.</returns>
        public static PositiveDefiniteMatrix operator +(PositiveDefiniteMatrix a, PositiveDefiniteMatrix b)
        {
            PositiveDefiniteMatrix result = (PositiveDefiniteMatrix)a.Clone();

            result.SetToSum(result, b);
            return(result);
        }
        /// <summary>
        /// Adds a weighted observation
        /// </summary>
        /// <param name="x"></param>
        /// <param name="weight"></param>
        public void Add(Matrix x, double weight)
        {
            // new_mean = mean + w/(count + w)*(x - mean)
            // new_var = count/(count + w)*(var + w/(count+w)*(x-mean)*(x-mean)')
            Count += weight;
            if (Count == 0)
            {
                return;
            }
            diff.SetToDifference(x, Mean);
            double s = weight / Count;

            Mean.SetToSum(1, Mean, s, diff);
            diff.SetToElementwiseProduct(diff, diff);
            Variance.SetToSum(1 - s, Variance, s * (1 - s), diff);
        }
Пример #3
0
        /// <summary>
        /// Adds a noisy observation.
        /// </summary>
        /// <param name="x"></param>
        /// <param name="noiseVariance"></param>
        /// <param name="weight"></param>
        public void Add(Vector x, PositiveDefiniteMatrix noiseVariance, double weight)
        {
            // new_cov = count/(count + w)*(cov + w/(count+w)*(x-mean)*(x-mean)') + w/(count+w)*noiseVariance
            Add(x, weight);
            if (count == 0)
            {
                return;
            }
            double s = weight / count;

            cov.SetToSum(1, cov, s, noiseVariance);
        }