Пример #1
0
        private bool TryVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, AggregateDeclaration context, AggregateType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeSrc.IsInterfaceType || typeSrc.IsDelegateType);

            typeDst = null;

            AggregateSymbol aggSym      = typeSrc.OwningAggregate;
            AggregateType   aggOpenType = aggSym.getThisType();

            if (!semanticChecker.CheckTypeAccess(aggOpenType, context))
            {
                // if the aggregate symbol itself is not accessible, then forget it, there is no
                // variance that will help us arrive at an accessible type.
                return(false);
            }

            TypeArray typeArgs   = typeSrc.TypeArgsThis;
            TypeArray typeParams = aggOpenType.TypeArgsThis;

            CType[] newTypeArgsTemp = new CType[typeArgs.Count];

            for (int i = 0; i < newTypeArgsTemp.Length; i++)
            {
                CType typeArg = typeArgs[i];
                if (semanticChecker.CheckTypeAccess(typeArg, context))
                {
                    // we have an accessible argument, this position is not a problem.
                    newTypeArgsTemp[i] = typeArg;
                    continue;
                }

                if (!typeArg.IsReferenceType || !((TypeParameterType)typeParams[i]).Covariant)
                {
                    // This guy is inaccessible, and we are not going to be able to vary him, so we need to fail.
                    return(false);
                }

                newTypeArgsTemp[i] = GetBestAccessibleType(semanticChecker, context, typeArg);

                // now we either have a value type (which must be accessible due to the above
                // check, OR we have an inaccessible type (which must be a ref type). In either
                // case, the recursion worked out and we are OK to vary this argument.
            }

            TypeArray newTypeArgs      = semanticChecker.getBSymmgr().AllocParams(typeArgs.Count, newTypeArgsTemp);
            CType     intermediateType = GetAggregate(aggSym, typeSrc.OuterType, newTypeArgs);

            // All type arguments were varied successfully, which means now we must be accessible. But we could
            // have violated constraints. Let's check that out.

            if (!TypeBind.CheckConstraints(semanticChecker, errHandling: null, intermediateType, CheckConstraintsFlags.NoErrors))
            {
                return(false);
            }

            typeDst = intermediateType;
            Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, context));
            return(true);
        }
Пример #2
0
        private bool TryVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, AggregateType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeSrc.isInterfaceType() || typeSrc.isDelegateType());

            typeDst = null;

            AggregateSymbol aggSym      = typeSrc.GetOwningAggregate();
            AggregateType   aggOpenType = aggSym.getThisType();

            if (!semanticChecker.CheckTypeAccess(aggOpenType, bindingContext.ContextForMemberLookup))
            {
                // if the aggregate symbol itself is not accessible, then forget it, there is no
                // variance that will help us arrive at an accessible type.
                return(false);
            }

            TypeArray typeArgs   = typeSrc.GetTypeArgsThis();
            TypeArray typeParams = aggOpenType.GetTypeArgsThis();

            CType[] newTypeArgsTemp = new CType[typeArgs.Count];

            for (int i = 0; i < typeArgs.Count; i++)
            {
                if (semanticChecker.CheckTypeAccess(typeArgs[i], bindingContext.ContextForMemberLookup))
                {
                    // we have an accessible argument, this position is not a problem.
                    newTypeArgsTemp[i] = typeArgs[i];
                    continue;
                }

                if (!typeArgs[i].IsRefType() || !((TypeParameterType)typeParams[i]).Covariant)
                {
                    // This guy is inaccessible, and we are not going to be able to vary him, so we need to fail.
                    return(false);
                }

                CType intermediateTypeArg;
                if (GetBestAccessibleType(semanticChecker, bindingContext, typeArgs[i], out intermediateTypeArg))
                {
                    // now we either have a value type (which must be accessible due to the above
                    // check, OR we have an inaccessible type (which must be a ref type). In either
                    // case, the recursion worked out and we are OK to vary this argument.
                    newTypeArgsTemp[i] = intermediateTypeArg;
                    continue;
                }
                else
                {
                    Debug.Assert(false, "GetBestAccessibleType unexpectedly failed on a type that was used as a type parameter");
                    return(false);
                }
            }

            TypeArray newTypeArgs      = semanticChecker.getBSymmgr().AllocParams(typeArgs.Count, newTypeArgsTemp);
            CType     intermediateType = this.GetAggregate(aggSym, typeSrc.outerType, newTypeArgs);

            // All type arguments were varied successfully, which means now we must be accessible. But we could
            // have violated constraints. Let's check that out.

            if (!TypeBind.CheckConstraints(semanticChecker, null /*ErrorHandling*/, intermediateType, CheckConstraintsFlags.NoErrors))
            {
                return(false);
            }

            typeDst = intermediateType;
            Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup));
            return(true);
        }
Пример #3
0
        private bool TryVarianceAdjustmentToGetAccessibleType(CSemanticChecker semanticChecker, BindingContext bindingContext, AggregateType typeSrc, out CType typeDst)
        {
            Debug.Assert(typeSrc != null);
            Debug.Assert(typeSrc.isInterfaceType() || typeSrc.isDelegateType());

            typeDst = null;

            AggregateSymbol aggSym = typeSrc.GetOwningAggregate();
            AggregateType aggOpenType = aggSym.getThisType();

            if (!semanticChecker.CheckTypeAccess(aggOpenType, bindingContext.ContextForMemberLookup()))
            {
                // if the aggregate symbol itself is not accessible, then forget it, there is no
                // variance that will help us arrive at an accessible type.
                return false;
            }

            TypeArray typeArgs = typeSrc.GetTypeArgsThis();
            TypeArray typeParams = aggOpenType.GetTypeArgsThis();
            CType[] newTypeArgsTemp = new CType[typeArgs.size];

            for (int i = 0; i < typeArgs.size; i++)
            {
                if (semanticChecker.CheckTypeAccess(typeArgs.Item(i), bindingContext.ContextForMemberLookup()))
                {
                    // we have an accessible argument, this position is not a problem.
                    newTypeArgsTemp[i] = typeArgs.Item(i);
                    continue;
                }

                if (!typeArgs.Item(i).IsRefType() || !typeParams.Item(i).AsTypeParameterType().Covariant)
                {
                    // This guy is inaccessible, and we are not going to be able to vary him, so we need to fail.
                    return false;
                }

                CType intermediateTypeArg;
                if (GetBestAccessibleType(semanticChecker, bindingContext, typeArgs.Item(i), out intermediateTypeArg))
                {
                    // now we either have a value type (which must be accessible due to the above
                    // check, OR we have an inaccessible type (which must be a ref type). In either
                    // case, the recursion worked out and we are OK to vary this argument.
                    newTypeArgsTemp[i] = intermediateTypeArg;
                    continue;
                }
                else
                {
                    Debug.Assert(false, "GetBestAccessibleType unexpectedly failed on a type that was used as a type parameter");
                    return false;
                }
            }

            TypeArray newTypeArgs = semanticChecker.getBSymmgr().AllocParams(typeArgs.size, newTypeArgsTemp);
            CType intermediateType = this.GetAggregate(aggSym, typeSrc.outerType, newTypeArgs);

            // All type arguments were varied successfully, which means now we must be accessible. But we could
            // have violated constraints. Let's check that out.

            if (!TypeBind.CheckConstraints(semanticChecker, null/*ErrorHandling*/, intermediateType, CheckConstraintsFlags.NoErrors))
            {
                return false;
            }

            typeDst = intermediateType;
            Debug.Assert(semanticChecker.CheckTypeAccess(typeDst, bindingContext.ContextForMemberLookup()));
            return true;
        }
Пример #4
0
        private void Reset()
        {
            _controller = new RuntimeBinderController();
            _semanticChecker = new LangCompiler(_controller, new NameManager());

            BSYMMGR bsymmgr = _semanticChecker.getBSymmgr();
            NameManager nameManager = _semanticChecker.GetNameManager();

            InputFile infile = bsymmgr.GetMiscSymFactory().CreateMDInfile(nameManager.Lookup(""), (mdToken)0);
            infile.SetAssemblyID(bsymmgr.AidAlloc(infile));
            infile.AddToAlias(KAID.kaidThisAssembly);
            infile.AddToAlias(KAID.kaidGlobal);

            _symbolTable = new SymbolTable(
                bsymmgr.GetSymbolTable(),
                bsymmgr.GetSymFactory(),
                nameManager,
                _semanticChecker.GetTypeManager(),
                bsymmgr,
                _semanticChecker,
                infile);
            _semanticChecker.getPredefTypes().Init(_semanticChecker.GetErrorContext(), _symbolTable);
            _semanticChecker.GetTypeManager().InitTypeFactory(_symbolTable);
            SymbolLoader.getPredefinedMembers().RuntimeBinderSymbolTable = _symbolTable;
            SymbolLoader.SetSymbolTable(_symbolTable);

            _exprFactory = new ExprFactory(_semanticChecker.GetSymbolLoader().GetGlobalSymbolContext());
            _outputContext = new OutputContext();
            _nameGenerator = new NameGenerator();
            _bindingContext = BindingContext.CreateInstance(
                _semanticChecker,
                _exprFactory,
                _outputContext,
                _nameGenerator,
                false,
                true,
                false,
                false,
                false,
                false,
                0);
            _binder = new ExpressionBinder(_bindingContext);
        }