Пример #1
0
        /// <summary>
        /// Initializes the transform using the parameters from the specified coordinate system information
        /// </summary>
        /// <param name="projInfo">A ProjectionInfo class contains all the standard and custom parameters needed to initialize this transform</param>
        protected override void OnInit(ProjectionInfo projInfo)
        {
            if (projInfo.IsSouth)
            {
                Y0 = 10000000;
                X0 = 500000;
                int zone;
                if (projInfo.Zone != null)
                {
                    zone = projInfo.Zone.Value;
                    if (zone <= 0 || zone > 60)
                    {
                        throw new ProjectionException(35);
                    }
                    zone -= 1;
                }
                else
                {
                    zone = (int)Math.Floor((Proj.Adjlon(Lam0) + Math.PI) * 30 / Math.PI);
                    if (zone < 0)
                    {
                        zone = 0;
                    }
                    if (zone >= 60)
                    {
                        zone = 59;
                    }
                }
                Lam0 = (zone + .5) * Math.PI / 30 - Math.PI;
                K0   = 0.9996;
                Phi0 = 0;
            }

            base.OnInit(projInfo);
        }
        /// <summary>
        /// Initializes the transform using the parameters from the specified coordinate system information
        /// </summary>
        /// <param name="projInfo">A ProjectionInfo class contains all the standard and custom parameters needed to initialize this transform</param>
        protected override void OnInit(ProjectionInfo projInfo)
        {
            double pp;

            /* get control point locations */
            double phi1 = projInfo.GetPhi1();
            double lam1 = projInfo.GetLam1();
            double phi2 = projInfo.GetPhi2();
            double lam2 = projInfo.GetLam2();

            if (phi1 == phi2 && lam1 == lam2)
            {
                throw new ProjectionException(-25);
            }
            Lam0   = Proj.Adjlon(0.5 * (lam1 + lam2));
            _dlam2 = Proj.Adjlon(lam2 - lam1);
            _cp1   = Math.Cos(phi1);
            _cp2   = Math.Cos(phi2);
            _sp1   = Math.Sin(phi1);
            _sp2   = Math.Sin(phi2);
            _cs    = _cp1 * _sp2;
            _sc    = _sp1 * _cp2;
            _ccs   = _cp1 * _cp2 * Math.Sin(_dlam2);
            _z02   = Proj.Aacos(_sp1 * _sp2 + _cp1 * _cp2 * Math.Cos(_dlam2));
            _hz0   = .5 * _z02;
            double A12 = Math.Atan2(_cp2 * Math.Sin(_dlam2),
                                    _cp1 * _sp2 - _sp1 * _cp2 * Math.Cos(_dlam2));

            _ca     = Math.Cos(pp = Proj.Aasin(_cp1 * Math.Sin(A12)));
            _sa     = Math.Sin(pp);
            _lp     = Proj.Adjlon(Math.Atan2(_cp1 * Math.Cos(A12), _sp1) - _hz0);
            _dlam2 *= .5;
            _lamc   = HalfPi - Math.Atan2(Math.Sin(A12) * _sp1, Math.Cos(A12)) - _dlam2;
            _thz0   = Math.Tan(_hz0);
            _rhshz0 = .5 / Math.Sin(_hz0);
            _r2z0   = 0.5 / _z02;
            _z02   *= _z02;
        }
Пример #3
0
        private static PhiLam Convert(PhiLam input, bool inverse, NadTable table)
        {
            if (input.Lambda == HUGE_VAL)
            {
                return(input);
            }
            // Normalize input to ll origin
            PhiLam tb = input;

            tb.Lambda -= table.LowerLeft.Lambda;
            tb.Phi    -= table.LowerLeft.Phi;
            tb.Lambda  = Proj.Adjlon(tb.Lambda - Math.PI) + Math.PI;
            PhiLam t = NadInterpolate(tb, table);

            if (inverse)
            {
                PhiLam del, dif;
                int    i = MAX_TRY;
                if (t.Lambda == HUGE_VAL)
                {
                    return(t);
                }
                t.Lambda = tb.Lambda + t.Lambda;
                t.Phi    = tb.Phi - t.Phi;
                do
                {
                    del = NadInterpolate(t, table);

                    /* This case used to return failure, but I have
                     *     changed it to return the first order approximation
                     *     of the inverse shift.  This avoids cases where the
                     *     grid shift *into* this grid came from another grid.
                     *     While we aren't returning optimally correct results
                     *     I feel a close result in this case is better than
                     *     no result.  NFW
                     *     To demonstrate use -112.5839956 49.4914451 against
                     *     the NTv2 grid shift file from Canada. */
                    if (del.Lambda == HUGE_VAL)
                    {
                        System.Diagnostics.Debug.WriteLine(ProjectionMessages.InverseShiftFailed);
                        break;
                    }
                    t.Lambda -= dif.Lambda = t.Lambda - del.Lambda - tb.Lambda;
                    t.Phi    -= dif.Phi = t.Phi + del.Phi - tb.Phi;
                } while (i-- > 0 && Math.Abs(dif.Lambda) > TOL && Math.Abs(dif.Phi) > TOL);
                if (i < 0)
                {
                    System.Diagnostics.Debug.WriteLine(ProjectionMessages.InvShiftConvergeFailed);
                    t.Lambda = t.Phi = HUGE_VAL;
                    return(t);
                }
                input.Lambda = Proj.Adjlon(t.Lambda + table.LowerLeft.Lambda);
                input.Phi    = t.Phi + table.LowerLeft.Phi;
            }
            else
            {
                if (t.Lambda == HUGE_VAL)
                {
                    input = t;
                }
                else
                {
                    input.Lambda -= t.Lambda;
                    input.Phi    += t.Phi;
                }
            }
            return(input);
        }
Пример #4
0
        /// <summary>
        /// Initializes the transform using the parameters from the specified coordinate system information
        /// </summary>
        /// <param name="projInfo">A ProjectionInfo class contains all the standard and custom parameters needed to initialize this transform</param>
        protected override void OnInit(ProjectionInfo projInfo)
        {
            double con;
            double f;
            double d;
            double toRadians = projInfo.GeographicInfo.Unit.Radians;

            _rot = projInfo.ParamI("no_rot") == 0;
            bool azi = projInfo.ParamD("alpha") != 0.0;

            if (azi)
            {
                _lamc  = projInfo.ParamD("lonc") * toRadians;
                _alpha = projInfo.ParamD("alpha") * toRadians;
                if (Math.Abs(_alpha) < Tol ||
                    Math.Abs(Math.Abs(Phi0) - HalfPi) <= Tol ||
                    Math.Abs(Math.Abs(_alpha) - HalfPi) <= Tol)
                {
                    throw new ProjectionException(32);
                }
            }
            else
            {
                _lam1 = projInfo.GetLam1();
                _phi1 = projInfo.GetPhi1();
                _lam2 = projInfo.GetLam2();
                _phi2 = projInfo.GetPhi2();
                if (Math.Abs(_phi1 - _phi2) <= Tol ||
                    (con = Math.Abs(_phi1)) <= Tol ||
                    Math.Abs(con - HalfPi) <= Tol ||
                    Math.Abs(Math.Abs(Phi0) - HalfPi) <= Tol ||
                    Math.Abs(Math.Abs(_phi2) - HalfPi) <= Tol)
                {
                    throw new ProjectionException(33);
                }
            }
            _ellips = Es > 0;
            double com = _ellips ? Math.Sqrt(OneEs) : 1;

            if (Math.Abs(Phi0) > EPS10)
            {
                double sinph0 = Math.Sin(Phi0);
                double cosph0 = Math.Cos(Phi0);
                if (_ellips)
                {
                    con = 1 - Es * sinph0 * sinph0;
                    _bl = cosph0 * cosph0;
                    _bl = Math.Sqrt(1 + Es * _bl * _bl / OneEs);
                    _al = _bl * K0 * com / con;
                    d   = _bl * com / (cosph0 * Math.Sqrt(con));
                }
                else
                {
                    _bl = 1;
                    _al = K0;
                    d   = 1 / cosph0;
                }


                if ((f = d * d - 1) <= 0)
                {
                    f = 0;
                }
                else
                {
                    f = Math.Sqrt(f);
                    if (Phi0 < 0)
                    {
                        f = -f;
                    }
                }
                _el = f += d;
                if (_ellips)
                {
                    _el *= Math.Pow(Proj.Tsfn(Phi0, sinph0, E), _bl);
                }
                else
                {
                    _el *= TSFN0(Phi0);
                }
            }
            else
            {
                _bl = 1 / com;
                _al = K0;
                _el = d = f = 1;
            }
            if (azi)
            {
                _gamma = Math.Asin(Math.Sin(_alpha) / d);
                Lam0   = _lamc - Math.Asin((.5 * (f - 1 / f)) * Math.Tan(_gamma)) / _bl;
            }
            else
            {
                double h;
                double l;
                if (_ellips)
                {
                    h = Math.Pow(Proj.Tsfn(_phi1, Math.Sin(_phi1), E), _bl);
                    l = Math.Pow(Proj.Tsfn(_phi2, Math.Sin(_phi2), E), _bl);
                }
                else
                {
                    h = TSFN0(_phi1);
                    l = TSFN0(_phi2);
                }
                f = _el / h;
                double p = (l - h) / (l + h);
                double j = _el * _el;
                j = (j - l * h) / (j + l * h);
                if ((con = _lam1 - _lam2) < -Math.PI)
                {
                    _lam2 -= Math.PI * 2;
                }
                else if (con > Math.PI)
                {
                    _lam2 += Math.PI * 2;
                }
                Lam0   = Proj.Adjlon(.5 * (_lam1 + _lam2) - Math.Atan(j * Math.Tan(.5 * _bl * (_lam1 - _lam2)) / p) / _bl);
                _gamma = Math.Atan(2 * Math.Sin(_bl * Proj.Adjlon(_lam1 - Lam0)) / (f - 1 / f));
                _alpha = Math.Asin(d * Math.Sin(_gamma));
            }
            _singam = Math.Sin(_gamma);
            _cosgam = Math.Cos(_gamma);
            if (projInfo.ParamI("rot_conv") != 0)
            {
                f = _gamma;
            }
            else
            {
                f = _alpha;
            }
            _sinrot = Math.Sin(f);
            _cosrot = Math.Cos(f);
            if (projInfo.ParamI("no_uoff") != 0)
            {
                _u0 = 0;
            }
            else
            {
                _u0 = Math.Abs(_al * Math.Atan(Math.Sqrt(d * d - 1) / _cosrot) / _bl);
            }
            if (Phi0 < 0)
            {
                _u0 = -_u0;
            }
        }