public static Results EvaluateSessionWindowed(DeviceType device, int subject_id) { configuartion_parameters_t parameneters = new configuartion_parameters_t(device); // Load subject dataset Dataset ds = Global.load_subject_dataset(device, subject_id); List <Sample> train_set = Global.GetTrainSet(ds, 1); // Covert the dataset to format accepted by Jackknife List <Jackknife.Sample> jk_train_set = JackknifeConnector.GetJKTrainSet(train_set); // Load subject session List <Frame> frames = new List <Frame>(); Global.load_session(device, subject_id, frames, ds); // Load ground truth List <GestureCommand> cmds = new List <GestureCommand>(); GestureCommand.GetAllCommands(cmds, ds, device, subject_id); // Train the recognizer JackknifeBlades blades = new JackknifeBlades(); blades.SetIPDefaults(); blades.ResampleCnt = 20; Jackknife.Jackknife jk = new Jackknife.Jackknife(blades); foreach (Jackknife.Sample s in jk_train_set) { jk.AddTemplate(s); } // Set between 2.0 and 10.0 in steps of .25 // to find the best result jk.SetRejectionThresholds(5.25f); // Set up filter for session points ExponentialMovingAverage ema_filter = new ExponentialMovingAverage(frames[0].pt); Vector pt; WindowSegmentor windowSegmentor = new WindowSegmentor(jk); //List<RecognitionResult> rresults = new List<RecognitionResult>(); List <ContinuousResult> continuous_results = new List <ContinuousResult>(); // Go through session for (int session_pt = 0; session_pt < frames.Count; session_pt++) { long ts1 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // at beginning pt = ema_filter.Filter(frames[session_pt].pt, 1 / (double)parameneters.fps); long ts2 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // after filter Jackknife.Vector jkpt = JackknifeConnector.ToJKVector(pt); windowSegmentor.Update(jkpt); windowSegmentor.Segment(continuous_results); if (session_pt % 2000 == 0) { Debug.Log(string.Format("{0}% Done", (double)session_pt / (double)frames.Count * 100.0)); } } foreach (ContinuousResult cr in continuous_results) { Debug.Log(string.Format("st {0}, en {1}, gid {2}", cr.startFrameNo, cr.endFrameNo, cr.gid)); } // Per gesture confusion matrix List <ConfisionMatrix> cm = new List <ConfisionMatrix>(); for (int ii = 0; ii < ds.Gestures.Count; ii++) { cm.Add(new ConfisionMatrix()); } for (int ii = 0; ii < continuous_results.Count; ii++) { ContinuousResult result = continuous_results[ii]; bool found = false; int cidx = 0; for (cidx = 0; cidx < cmds.Count; cidx++) { found = cmds[cidx].Hit(result); if (found == true) { break; } } if (found == true) { // true positive if (cmds[cidx].detected == false) { cmds[cidx].detected = true; cm[result.gid].tp += 1.0f; } } else { bool bad = GestureCommand.IsBadCommand( frames, result); if (bad == true) { continue; } // false positive cm[result.gid].fp += 1.0f; } } // false negatives for (int cidx = 0; cidx < cmds.Count; cidx++) { if (cmds[cidx].detected == true) { continue; } cm[cmds[cidx].gid].fn += 1.0; } Results ret = new Results(); for (int ii = 0; ii < cm.Count; ii++) { ret.AppendResults(cm[ii]); } ret.PrintF(); return(ret); }
public static Results EvaluateSession(DeviceType device, int subject_id) { configuartion_parameters_t parameneters = new configuartion_parameters_t(device); // Load subject dataset Dataset ds = Global.load_subject_dataset(device, subject_id); List <Sample> train_set = Global.GetTrainSet(ds, 1); // Covert the dataset to format accepted by Jackknife List <Jackknife.Sample> jk_train_set = JackknifeConnector.GetJKTrainSet(train_set); // Load subject session List <Frame> frames = new List <Frame>(); Global.load_session(device, subject_id, frames, ds); //Debug.Log("Frame_cnt = " + frames.Count()); // Load ground truth List <GestureCommand> cmds = new List <GestureCommand>(); GestureCommand.GetAllCommands(cmds, ds, device, subject_id); // Train the segmentor ContinuousResultOptions cr_options = new ContinuousResultOptions(); //COREY FIX latency framecount cr_options.latencyFrameCount = 1; Machete yeah = new Machete(device, cr_options); foreach (Sample s in train_set) { yeah.AddSample(s, filtered: true); } //PrintYeahStats(yeah); // Train the recognizer JackknifeBlades blades = new JackknifeBlades(); blades.SetIPDefaults(); //COREY FIX RESAMPLECNT blades.ResampleCnt = 20; blades.LowerBound = false; Jackknife.Jackknife jk = new Jackknife.Jackknife(blades); foreach (Jackknife.Sample s in jk_train_set) { jk.AddTemplate(s); } // Set between 2.0 and 10.0 in steps of .25 // to find the best result // Best at 7.5 with around 66% :/ jk.SetRejectionThresholds(7.0); // Set up filter for session points ExponentialMovingAverage ema_filter = new ExponentialMovingAverage(frames[0].pt, 5.0); Vector pt; List <Vector> video = new List <Vector>(); List <RecognitionResult> rresults = new List <RecognitionResult>(); int triggered_count = 0; // Go through session for (int session_pt = 0; session_pt < frames.Count; session_pt++) { long ts1 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // at beginning List <ContinuousResult> continuous_results = new List <ContinuousResult>(); pt = ema_filter.Filter(frames[session_pt].pt, 1 / (double)parameneters.fps); long ts2 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // after filter video.Add(pt); //Debug.Log(string.Format("Pt: {0} {1} {2}", pt.Data[0], pt.Data[1], pt.Data[2])); yeah.ProcessFrame(pt, session_pt, continuous_results); long ts3 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // after processing frame bool cancel_if_better_score = false; ContinuousResult result = ContinuousResult.SelectResult( continuous_results, cancel_if_better_score); long ts4 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // after looking for result //Debug.Log(string.Format("{0} {1} {2}", ts2 - ts1, ts3 - ts2, ts4 - ts3)); //Debug.Log(string.Format("FRAME NO: {0}", frame_no)); if (result == null) { continue; } //COREY FIX For comparing against the original code //if (result.sample.GestureId == 0) // Debug.Log(string.Format("start {0}, end {1}", result.startFrameNo, result.endFrameNo + 1)); triggered_count += 1; //Debug.Log(string.Format("Frame: {3} Result: {0}, Sample: {1}, Score: {2}", result.gid, result.sample.GestureName, result.score, frame_no)); //Debug.Log(string.Format("Best result as of: {0} {1}", ii, yeah.bestScore)); // Run recognizer on segmented result double recognizer_d = 0.0f; bool match = false; // Save a buffer to pass to recognizer List <Jackknife.Vector> jkbuffer = JackknifeConnector.GetJKBufferFromVideo( video, result.startFrameNo, result.endFrameNo); long ts5 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // before passing to recognizer match = jk.IsMatch(jkbuffer, result.sample.GestureId, out recognizer_d); //COREY Fix print out scores if (result.sample.GestureId == 0) { //Debug.Log(string.Format("start {0}, end {1} ", result.startFrameNo, result.endFrameNo + 1) + string.Format("Is match = {0}, score = {1}", // match, // recognizer_d)); } // Matched to template with this gid if (match == false) { continue; } long ts6 = DateTime.Now.Ticks / TimeSpan.TicksPerMillisecond; // after classifying // Gesture was accepted RecognitionResult rresult = new RecognitionResult(); rresult.gid = result.gid; rresult.start = result.startFrameNo; rresult.end = result.endFrameNo; rresult.score = recognizer_d; match = false; for (int ii = 0; ii < rresults.Count; ii++) { if (rresults[ii].Update(rresult) == true) { match = true; break; } } // if some result was updated for better, continue if (match == true) { continue; } rresults.Add(rresult); } // Per gesture confusion matrix List <ConfisionMatrix> cm = new List <ConfisionMatrix>(); for (int ii = 0; ii < ds.Gestures.Count; ii++) { cm.Add(new ConfisionMatrix()); } for (int ii = 0; ii < rresults.Count; ii++) { RecognitionResult result = rresults[ii]; bool found = false; int cidx = 0; for (cidx = 0; cidx < cmds.Count; cidx++) { found = cmds[cidx].Hit(result); if (found == true) { break; } } if (found == true) { // true positive if (cmds[cidx].detected == false) { cmds[cidx].detected = true; cm[result.gid].tp += 1.0f; } } else { bool bad = GestureCommand.IsBadCommand( frames, result); if (bad == true) { continue; } // false positive cm[result.gid].fp += 1.0f; } } // false negatives for (int cidx = 0; cidx < cmds.Count; cidx++) { if (cmds[cidx].detected == true) { continue; } cm[cmds[cidx].gid].fn += 1.0; } Results ret = new Results(); for (int ii = 0; ii < cm.Count; ii++) { ret.AppendResults(cm[ii]); //temp += string.Format("{5}:\t A: {0:N6}, E: {1:N6}, P: {2:N6}, R: {3:N6}, F1: {4:N6}\n", ret.accuracy/ret.total, ret.error / ret.total, ret.precision / ret.total, ret.recall / ret.total, ret.f1_0 / ret.total, ii); } //Debug.Log(temp); return(ret); }