/// <summary> Function which submits a frame to the Face API. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the faces returned by the API. </returns>
        private async Task <LiveCameraResult> FacesAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            // Submit image to API.
            var attrs = new List <FaceAttributeType> {
                FaceAttributeType.Age,
                FaceAttributeType.Gender, FaceAttributeType.HeadPose
            };
            var faces = await _faceClient.DetectAsync(jpg, returnFaceAttributes : attrs);

            // Count the API call.
            Properties.Settings.Default.FaceAPICallCount++;
            // Output.
            LiveCameraResult _result = new LiveCameraResult
            {
                Faces          = faces,
                TimeStamp      = DateTime.Now,
                SelectedCamera = camo
            };

            TotalAPIResults.Add(_result);
            ApiResult = _result;
            analysisLog.SaveData(_result);
            return(_result);
        }
Пример #2
0
        public Dictionary <Guid, int> ComputeFrameScorePerPlayer(LiveCameraResult apiResult)
        {
            var scoresDictionary = new Dictionary <Guid, int>();

            if (apiResult.Identities != null && apiResult.Identities.Count > 0)
            {
                KeyValuePair <string, float> currDominantEmotion;
                Guid personId;

                foreach (var item in apiResult.Identities)
                {
                    personId            = item.Key;
                    currDominantEmotion = getDominantEmotion(apiResult.Identities[personId].FaceAttributes.Emotion);
                    double delta = Math.Abs(currDominantEmotion.Value - this.targetScore);
                    if (currDominantEmotion.Key == this.targetEmotion.ToString() &&
                        delta <= Delta)
                    {
                        scoresDictionary[personId] = 10 * (int)Math.Round(1 + 10 * (Delta - delta), 1);
                    }
                    else
                    {
                        scoresDictionary[personId] = 0;
                    }
                }
            }

            return(scoresDictionary);
        }
        /// <summary> Function which submits a frame to the Face API. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the faces returned by the API. </returns>
        private async Task <LiveCameraResult> FacesAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            //TODO Hackathon:
            // Submit image to API.
            var result = new LiveCameraResult();

            try
            {
                var attrs = new List <FaceAttributeType> {
                    FaceAttributeType.Age, FaceAttributeType.Gender, FaceAttributeType.Glasses, FaceAttributeType.FacialHair, FaceAttributeType.Emotion, FaceAttributeType.Smile
                };
                result.Faces = await _faceClient.DetectAsync(jpg, returnFaceAttributes : attrs);
            }
            catch (FaceAPIException faceException)
            {
                MessageBox.Show(faceException.ErrorMessage, faceException.ErrorCode);
            }


            // Count the API call.
            Properties.Settings.Default.FaceAPICallCount++;
            // Output.

            return(result);
        }
        private async Task <string> IdentifyPerson(string personGroupId)
        {
            string writeBack = "";

            IList <IdentifyResult> result = new List <IdentifyResult>();

            LiveCameraResult lc = new LiveCameraResult();

            writeBack = $"Face ID: {lc.UserFace.ToString()}";

            //IList<Guid> faceId = lc.UserFace.Select(face => face.FaceId.GetValueOrDefault()).ToList();

            //var results = await faceClient.Face.IdentifyAsync(faceId, personGroupId);
            //foreach (var identifyResult in results)
            //{
            //    writeBack += ($"Result of face: {identifyResult.FaceId} ");
            //    if (identifyResult.Candidates.Count == 0)
            //    {
            //        writeBack += "No one identified ";
            //    }
            //    else
            //    {
            //        // Get top 1 among all candidates returned
            //        var candidateId = identifyResult.Candidates[0].PersonId;
            //        var person = await faceClient.PersonGroupPerson.GetAsync(personGroupId, candidateId);
            //        writeBack += ($"Identified as {person.Name} ");
            //    }
            //}

            return(writeBack);
        }
        /// <summary> Function which submits a frame to the Computer Vision API for celebrity
        ///     detection. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the celebrities returned by the API. </returns>
        private async Task <LiveCameraResult> CelebrityAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            // Submit image to API.
            var result = await _visionClient.AnalyzeImageInDomainAsync(jpg, "celebrities");

            // Count the API call.
            Properties.Settings.Default.VisionAPICallCount++;
            // Output.
            var celebs = JsonConvert.DeserializeObject <CelebritiesResult>(result.Result.ToString()).Celebrities;
            LiveCameraResult _result = new LiveCameraResult
            {
                TimeStamp = DateTime.Now,
                // Extract face rectangles from results.
                Faces = celebs.Select(c => CreateFace(c.FaceRectangle)).ToArray(),
                // Extract celebrity names from results.
                CelebrityNames = celebs.Select(c => c.Name).ToArray()
            };

            TotalAPIResults.Add(_result);
            ApiResult = _result;
            analysisLog.SaveData(_result);
            return(_result);
        }
Пример #6
0
        private void SavePlayerImages(BitmapSource image, LiveCameraResult result)
        {
            if (result == null || result.Identities == null || this.gameState != GameState.Game)
            {
                return;
            }

            if (DateTime.Now.AddSeconds(-playerImagesTimeOffsetSec) > this.lastPlayerImagesTime)
            {
                this.groupImages.Add(image);
                SaveImageToFile(image);

                foreach (var player in result.Identities)
                {
                    int           offset        = 0;
                    Int32Rect     faceRectangle = new Int32Rect(player.Value.FaceRectangle.Left + offset, player.Value.FaceRectangle.Top + offset, player.Value.FaceRectangle.Width + offset, player.Value.FaceRectangle.Height + offset);
                    CroppedBitmap playerImage   = new CroppedBitmap(image, faceRectangle);

                    if (playerImages.ContainsKey(player.Key))
                    {
                        playerImages[player.Key].Add(playerImage);
                    }
                    else
                    {
                        playerImages[player.Key] = new List <CroppedBitmap>()
                        {
                            playerImage
                        };
                    }

                    lastPlayerImagesTime = DateTime.Now;
                }
            }
        }
Пример #7
0
        private BitmapSource VisualizeResult(VideoFrame frame)
        {
            // Draw any results on top of the image.
            BitmapSource visImage = frame.Image.ToBitmapSource();

            LiveCameraResult result = _latestResultsToDisplay;

            if (result != null)
            {
                // See if we have local face detections for this image.
                var clientFaces = (OpenCvSharp.Rect[])frame.UserData;
                if (clientFaces != null && result.Faces != null)
                {
                    // If so, then the analysis results might be from an older frame. We need to match
                    // the client-side face detections (computed on this frame) with the analysis
                    // results (computed on the older frame) that we want to display.
                    MatchAndReplaceFaceRectangles(result.Faces, clientFaces);
                }

                if (this.gameState == GameState.Explain)
                {
                    this.Dispatcher.BeginInvoke((Action)(() =>
                    {
                        RightImage.Source = ImageProvider.Instructions;
                        //visImage = Visualization.DrawExplain(visImage);
                    }));
                }
                else if (this.gameState == GameState.RoundBegin)
                {
                    visImage = VisualizeStartRound(frame);
                }
                else if (this.gameState == GameState.RoundEnd)
                {
                    visImage = VisualizeEndRound(frame);
                }
                else if (this.gameState == GameState.Game)
                {
                    // Compute round score
                    Dictionary <Guid, int> scores = round.ComputeFrameScorePerPlayer(result);
                    scoringSystem.AddToCurrentRound(scores);
                    visImage = Visualization.DrawFaces(visImage, round, result.Identities, scoringSystem, _mode);

                    SavePlayerImages(frame.Image.ToBitmapSource(), result);
                }
                else if (this.gameState == GameState.Participants)
                {
                    visImage = Visualization.DrawParticipants(visImage, result.Faces);
                }
                else if (this.gameState == GameState.GameEnd)
                {
                    _grabber.StopProcessingAsync();
                    visImage = VisualizeEndGame(frame);
                }
            }

            return(visImage);
        }
        public MainWindow()
        {
            InitializeComponent();

            // Create grabber.
            _grabber = new FrameGrabber <LiveCameraResult>();

            // Set up a listener for when the client receives a new frame.
            _grabber.NewFrameProvided += (s, e) =>
            {
                // The callback may occur on a different thread, so we must use the
                // MainWindow.Dispatcher when manipulating the UI.
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    // Display the image in the left pane.
                    LeftImage.Source = e.Frame.Image.ToBitmapSource();
                }));

                // See if auto-stop should be triggered.
                if (Properties.Settings.Default.AutoStopEnabled && (DateTime.Now - _startTime) > Properties.Settings.Default.AutoStopTime)
                {
                    _grabber.StopProcessingAsync();
                }
            };

            // Set up a listener for when the client receives a new result from an API call.
            _grabber.NewResultAvailable += (s, e) =>
            {
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    if (e.TimedOut)
                    {
                        MessageArea.Text = "API call timed out.";
                    }
                    else if (e.Exception != null)
                    {
                        string apiName = "";
                        string message = e.Exception.Message;
                        var faceEx = e.Exception as FaceAPIException;
                        if (faceEx != null)
                        {
                            apiName = "Face";
                            message = faceEx.ErrorMessage;
                        }
                        MessageArea.Text = string.Format("{0} API call failed on frame {1}. Exception: {2}", apiName, e.Frame.Metadata.Index, message);
                    }
                    else
                    {
                        _latestResultsToDisplay = e.Analysis;
                        RightImage.Source = VisualizeResult(e.Frame);
                    }
                }));
            };

            // Create local face detector.
            _localFaceDetector.Load("Data/haarcascade_frontalface_alt2.xml");
        }
        /// <summary> Function which submits a frame to the Emotion API. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the emotions returned by the API. </returns>
        private async Task <LiveCameraResult> EmotionAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);

            // Submit image to API.
            Emotion[] emotions = null;

            // See if we have local face detections for this image.
            var localFaces = (OpenCvSharp.Rect[])frame.UserData;

            if (localFaces == null)
            {
                // If localFaces is null, we're not performing local face detection.
                // Use Cognigitve Services to do the face detection.
                Properties.Settings.Default.EmotionAPICallCount++;
                emotions = await _emotionClient.RecognizeAsync(jpg);
            }
            else if (localFaces.Count() > 0)
            {
                // If we have local face detections, we can call the API with them.
                // First, convert the OpenCvSharp rectangles.
                var rects = localFaces.Select(
                    f => new Microsoft.ProjectOxford.Common.Rectangle
                {
                    Left   = f.Left,
                    Top    = f.Top,
                    Width  = f.Width,
                    Height = f.Height
                });
                Properties.Settings.Default.EmotionAPICallCount++;
                emotions = await _emotionClient.RecognizeAsync(jpg, rects.ToArray());
            }
            else
            {
                // Local face detection found no faces; don't call Cognitive Services.
                emotions = new Emotion[0];
            }

            // Output.
            LiveCameraResult _result = new LiveCameraResult
            {
                TimeStamp = DateTime.Now,
                Faces     = emotions.Select(e => CreateFace(e.FaceRectangle)).ToArray(),
                // Extract emotion scores from results.
                EmotionScores = emotions.Select(e => e.Scores).ToArray()
            };

            TotalAPIResults.Add(_result); ApiResult = _result;
            analysisLog.SaveData(_result);
            return(_result);
        }
        /// <summary> Function which submits a frame to the Face API. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the faces returned by the API. </returns>
        private async Task <LiveCameraResult> FacesAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            // Submit image to API.
            var attrs = new List <FaceAPI.FaceAttributeType> {
                FaceAPI.FaceAttributeType.Age,
                FaceAPI.FaceAttributeType.Gender,
                FaceAPI.FaceAttributeType.HeadPose,
                FaceAPI.FaceAttributeType.Glasses,
                FaceAPI.FaceAttributeType.FacialHair,
            };


            var faces = await _faceClient.DetectAsync(jpg, returnFaceAttributes : attrs);

            // Count the API call.
            Properties.Settings.Default.FaceAPICallCount++;



            //IRUEL GET
            LiveCameraResult result = new LiveCameraResult {
                Faces = faces
            };

            Microsoft.ProjectOxford.Face.Contract.Face xx = new Microsoft.ProjectOxford.Face.Contract.Face();
            xx = result.Faces[0];

            Microsoft.ProjectOxford.Face.Contract.FaceAttributes dd = new Microsoft.ProjectOxford.Face.Contract.FaceAttributes();
            dd = xx.FaceAttributes;

            Trace.WriteLine(dd.Age.ToString() + ' ' + dd.Gender.ToString() + ' ' + dd.Glasses.ToString());


            //return new LiveCameraResult
            //{
            //    // Extract face rectangles from results.
            //    Faces = celebs.Select(c => CreateFace(c.FaceRectangle)).ToArray(),
            //    // Extract celebrity names from results.
            //    CelebrityNames = celebs.Select(c => c.Name).ToArray()
            //};

            // Output.
            return(new LiveCameraResult {
                Faces = faces
            });
        }
Пример #11
0
        private async Task <LiveCameraResult> DescriptionAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            // Submit image to API
            var result = await _visionClient.DescribeAsync(jpg);

            // Count the API call.
            Properties.Settings.Default.VisionAPICallCount++;
            // Output.
            LiveCameraResult cResult = new LiveCameraResult();

            cResult.Caption = result.Description.Captions;

            return(new LiveCameraResult {
                Caption = result.Description.Captions
            });
        }
Пример #12
0
        public async Task <bool> FindSimilar(LiveCameraResult liveCameraResult)
        {
            try
            {
                if (string.IsNullOrWhiteSpace(DocumentImagePath))
                {
                    return(false);
                }
                IList <Guid?> targetFaceIds = new List <Guid?>();
                using (var jpg = File.OpenRead(DocumentImagePath))
                {
                    // Detect faces from load image.
                    var detectWithStreamCmd = new DetectWithStreamCmd();
                    var faces = await detectWithStreamCmd.DetectWithStreamAsync(jpg);

                    //// Add detected faceId to list of GUIDs.
                    if (faces.Count <= 0)
                    {
                        MessageArea.Text = $"No se detectaron rostros en la imagen.";
                        return(false);
                    }
                    targetFaceIds.Add(faces[0].FaceId.Value);
                }
                var verifyFaceToFaceCmd = new VerifyFaceToFaceCmd();
                var similarResults      = await verifyFaceToFaceCmd.VerifyFaceToFaceAsync(liveCameraResult.Faces.First().FaceId.Value, targetFaceIds.First().Value);

                if (similarResults.IsIdentical)
                {
                    RightImage.Source = VisualizeResult(liveCameraResult.VideoFrame);
                    MessageArea.Text  = $"Los rostros son similares con una confianza de: {similarResults.Confidence}.";
                    return(true);
                }
                else
                {
                    MessageArea.Text = $"Los rostros no son identicos.";
                    return(true);
                }
            }
            catch (Exception ex)
            {
                MessageArea.Text = $"Se ha presentado un error: {ex.Message}";
                return(false);
            }
        }
Пример #13
0
        /// <summary> Function which submits a frame to the Computer Vision API for tagging. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the tags returned by the API. </returns>
        private async Task <LiveCameraResult> TaggingAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            // Submit image to API.
            var analysis = await _visionClient.GetTagsAsync(jpg);

            // Count the API call.
            Properties.Settings.Default.VisionAPICallCount++;
            // Output.
            LiveCameraResult _result = new LiveCameraResult {
                Tags = analysis.Tags, TimeStamp = DateTime.Now
            };

            TotalAPIResults.Add(_result);
            ApiResult = _result;
            analysisLog.SaveData(_result);
            return(_result);
        }
Пример #14
0
        public Dictionary <Guid, int> ComputeFrameScorePerPlayer(LiveCameraResult apiResult)
        {
            var scoresDictionary = new Dictionary <Guid, int>();

            if (apiResult.Identities != null && apiResult.Identities.Count > 0 && apiResult.Identities.ContainsKey(leader))
            {
                KeyValuePair <string, float> currDominantEmotion;
                Guid personId;
                KeyValuePair <string, float> leaderEmotion;
                int mimicPlayersCount = 0;

                leaderEmotion = RoundEmotion.getDominantEmotion(apiResult.Identities[leader].FaceAttributes.Emotion);

                foreach (var item in apiResult.Identities)
                {
                    personId = item.Key;
                    if (personId == leader)
                    {
                        continue;
                    }

                    currDominantEmotion = RoundEmotion.getDominantEmotion(apiResult.Identities[personId].FaceAttributes.Emotion);
                    double delta = Math.Abs(currDominantEmotion.Value - leaderEmotion.Value);
                    if (currDominantEmotion.Key == leaderEmotion.Key &&
                        delta <= Delta)
                    {
                        scoresDictionary[personId] = 10 * (int)Math.Round(1 + 10 * (Delta - delta), 1);
                        mimicPlayersCount++;
                    }
                    else
                    {
                        scoresDictionary[personId] = 0;
                    }
                }

                int totalPlayersCount = apiResult.Identities.Count;

                // handle leader scoring
                scoresDictionary[leader] = (totalPlayersCount - mimicPlayersCount) * 10;
            }

            return(scoresDictionary);
        }
Пример #15
0
        /// <summary> Function which submits a frame to the Emotion API. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the emotions returned by the API. </returns>
        private async Task <LiveCameraResult> AnalysisFunction(VideoFrame frame)
        {
            var jpg   = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            var attrs = new List <FaceAttributeType> {
                FaceAttributeType.Age, FaceAttributeType.Emotion
            };

            Face[] faces = await _faceClient.DetectAsync(jpg, returnFaceAttributes : attrs);

            Guid[] faceIds = faces.Select(face => face.FaceId).ToArray();


            var liveCameraResult = new LiveCameraResult
            {
                Faces         = faces,
                EmotionScores = faces.Select(f => f.FaceAttributes.Emotion).ToArray()
            };

            try
            {
                IdentifyResult[] identities = await _faceClient.IdentifyAsync(currentGroupId, faceIds);

                var identityDict = new Dictionary <Guid, Face>();

                foreach (var identity in identities)
                {
                    if (identity.Candidates.Length > 0 && identity.Candidates[0].Confidence > 0.6)
                    {
                        identityDict[identity.Candidates[0].PersonId] = faces.First(f => f.FaceId == identity.FaceId);
                    }
                }

                liveCameraResult.Identities = identityDict;
            }
            catch (Exception e)
            {
            }

            return(liveCameraResult);
        }
        /// <summary> Function which submits a frame to the Computer Vision API for tagging. </summary>
        /// <param name="frame"> The video frame to submit. </param>
        /// <returns> A <see cref="Task{LiveCameraResult}"/> representing the asynchronous API call,
        ///     and containing the tags returned by the API. </returns>
        private async Task <LiveCameraResult> TaggingAnalysisFunction(VideoFrame frame)
        {
            // Encode image.
            var jpg = frame.Image.ToMemoryStream(".jpg", s_jpegParams);
            //TODO Hackathon:
            // Submit image to API.
            // Count the API call.
            // Output. return null is just a dummy.
            var result = new LiveCameraResult();

            try
            {
                var tagsResult = await _visionClient.GetTagsAsync(jpg);

                result.Tags = tagsResult.Tags;
            }
            catch (Exception e)
            {
                MessageBox.Show(e.ToString());
            }

            return(result);
        }
Пример #17
0
        public Dictionary <Guid, int> ComputeFrameScorePerPlayer(LiveCameraResult apiResult)
        {
            var scoresDictionary = new Dictionary <Guid, int>();

            if (apiResult.Identities != null && apiResult.Identities.Count > 0)
            {
                Guid   personId;
                double personAverageAge;
                double deltaFromAverage;
                double age;
                foreach (var item in apiResult.Identities)
                {
                    personId = item.Key;

                    if (!agesCount.ContainsKey(personId))
                    {
                        agesCount[personId]   = 0;
                        agesSum[personId]     = 0.0;
                        agesAverage[personId] = 0.0;
                    }

                    age = apiResult.Identities[personId].FaceAttributes.Age;
                    personAverageAge = this.agesAverage[personId];
                    deltaFromAverage = age - personAverageAge;
                    if (deltaFromAverage > 0 && personAverageAge > 0)
                    {
                        scoresDictionary[item.Key] = 10 * (int)Math.Round(deltaFromAverage / 2);
                    }

                    this.agesCount[personId]++;
                    this.agesSum[personId]    += age;
                    this.agesAverage[personId] = this.agesSum[personId] / this.agesCount[personId];
                }
            }

            return(scoresDictionary);
        }
Пример #18
0
        public MainWindow()
        {
            InitializeComponent();

            // Create grabber.
            _grabber = new FrameGrabber <LiveCameraResult>();

            // Set up a listener for when the client receives a new frame.
            _grabber.NewFrameProvided += (s, e) =>
            {
                if (_mode == AppMode.EmotionsWithClientFaceDetect)
                {
                    // Local face detection.
                    var rects = _localFaceDetector.DetectMultiScale(e.Frame.Image);
                    // Attach faces to frame.
                    e.Frame.UserData = rects;
                }

                // The callback may occur on a different thread, so we must use the
                // MainWindow.Dispatcher when manipulating the UI.
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    // Display the image in the left pane.
                    LeftImage.Source = e.Frame.Image.ToBitmapSource();

                    // If we're fusing client-side face detection with remote analysis, show the
                    // new frame now with the most recent analysis available.
                    if (_fuseClientRemoteResults)
                    {
                        RightImage.Source = VisualizeResult(e.Frame);
                    }
                }));

                // See if auto-stop should be triggered.
                if (Properties.Settings.Default.AutoStopEnabled && (DateTime.Now - _startTime) > Properties.Settings.Default.AutoStopTime)
                {
                    _grabber.StopProcessingAsync();
                }
            };

            // Set up a listener for when the client receives a new result from an API call.
            _grabber.NewResultAvailable += (s, e) =>
            {
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    if (e.TimedOut)
                    {
                        MessageArea.Text = "API call timed out.";
                    }
                    else if (e.Exception != null)
                    {
                        string apiName = "";
                        string message = e.Exception.Message;
                        var faceEx = e.Exception as FaceAPI.FaceAPIException;
                        var emotionEx = e.Exception as Common.ClientException;
                        var visionEx = e.Exception as VisionAPI.ClientException;
                        if (faceEx != null)
                        {
                            apiName = "Face";
                            message = faceEx.ErrorMessage;
                        }
                        else if (emotionEx != null)
                        {
                            apiName = "Emotion";
                            message = emotionEx.Error.Message;
                        }
                        else if (visionEx != null)
                        {
                            apiName = "Computer Vision";
                            message = visionEx.Error.Message;
                        }
                        MessageArea.Text = string.Format("{0} API call failed on frame {1}. Exception: {2}", apiName, e.Frame.Metadata.Index, message);
                    }
                    else
                    {
                        _latestResultsToDisplay = e.Analysis;

                        // Display the image and visualization in the right pane.
                        if (!_fuseClientRemoteResults)
                        {
                            RightImage.Source = VisualizeResult(e.Frame);
                        }
                    }
                }));
            };

            // Create local face detector.
            _localFaceDetector.Load("Data/haarcascade_frontalface_alt2.xml");
        }
Пример #19
0
        public MainWindow()
        {
            InitializeComponent();

            int onetime = 0;

            // Create grabber.
            _grabber = new FrameGrabber <LiveCameraResult>();

            //DB call

            string queryString =

                "SELECT imageurl from API_transnet_Secondary";

            string connectionString = "Server=tcp:transnetserver.database.windows.net,1433;Initial Catalog=API_transnet;Persist Security Info=False;User ID=admin_server;Password=romir123123@;MultipleActiveResultSets=False;Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;";

            string image_link = "";

            using (SqlConnection connection =
                       new SqlConnection(connectionString))
            {
                // Create the Command and Parameter objects.
                SqlCommand command = new SqlCommand(queryString, connection);
                try
                {
                    connection.Open();
                    SqlDataReader reader = command.ExecuteReader();
                    int           x      = 0;
                    while (reader.Read())
                    {
                        image_link = reader[0].ToString();
                        byte[] binaryUrl = StrToByteArray(image_link);
                        System.Drawing.Image imageUrl = CreateImage(binaryUrl);
                        imageUrl.Save("C:\\Users\\romir\\Documents\\Visual Studio 2017\\Projects\\Transnetwork\\Secondary_DB_images\\THEBUYER" + x + ".bmp");

                        //NOW WE SHOULD COMPARE BETWEEN THE IMAGE URL (PIC FROM APP) AND STAION URL (PIC FROM STATION) USING AZURE API

                        //MakeAnalysisRequest("C:\\Users\\romir\\Documents\\Visual Studio 2017\\Windows\\VideoFrameAnalyzer\\THEBUYER.bmp");
                        //MakeAnalysisRequest(stationUrl);



                        x++;
                    }
                    reader.Close();
                }
                catch (Exception ex)
                {
                    throw new Exception();
                }
            }

            //DB call ended

            // Set up a listener for when the client receives a new frame.
            _grabber.NewFrameProvided += (s, e) =>
            {
                if (_mode == AppMode.EmotionsWithClientFaceDetect)
                {
                    // Local face detection.
                    var rects = _localFaceDetector.DetectMultiScale(e.Frame.Image);
                    // Attach faces to frame.
                    e.Frame.UserData = rects;
                }

                // The callback may occur on a different thread, so we must use the
                // MainWindow.Dispatcher when manipulating the UI.
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    // Display the image in the left pane.
                    LeftImage.Source = e.Frame.Image.ToBitmapSource();

                    // If we're fusing client-side face detection with remote analysis, show the
                    // new frame now with the most recent analysis available.
                    if (_fuseClientRemoteResults)
                    {
                        RightImage.Source = VisualizeResult(e.Frame);
                    }
                }));

                // See if auto-stop should be triggered.
                if (Properties.Settings.Default.AutoStopEnabled && (DateTime.Now - _startTime) > Properties.Settings.Default.AutoStopTime)
                {
                    _grabber.StopProcessingAsync();
                }
            };

            // Set up a listener for when the client receives a new result from an API call.
            _grabber.NewResultAvailable += (s, e) =>
            {
                this.Dispatcher.BeginInvoke((Action)(async() =>
                {
                    if (e.TimedOut)
                    {
                        MessageArea.Text = "API call timed out.";
                    }
                    else if (e.Exception != null)
                    {
                        string apiName = "";
                        string message = e.Exception.Message;
                        var faceEx = e.Exception as FaceAPIException;
                        var emotionEx = e.Exception as Microsoft.ProjectOxford.Common.ClientException;
                        var visionEx = e.Exception as Microsoft.ProjectOxford.Vision.ClientException;
                        if (faceEx != null)
                        {
                            apiName = "Face";
                            message = faceEx.ErrorMessage;
                        }
                        else if (emotionEx != null)
                        {
                            apiName = "Emotion";
                            message = emotionEx.Error.Message;
                        }
                        else if (visionEx != null)
                        {
                            apiName = "Computer Vision";
                            message = visionEx.Error.Message;
                        }
                        MessageArea.Text = string.Format("{0} API call failed on frame {1}. Exception: {2}", apiName, e.Frame.Metadata.Index, message);
                    }
                    else
                    {
                        _latestResultsToDisplay = e.Analysis;

                        double x = 2;
                        double y = 2;
                        // Display the image and visualization in the right pane.
                        if (!_fuseClientRemoteResults)
                        {
                            //onetime++;
                            RightImage.Source = VisualizeResult(e.Frame);
                            var image = e.Frame.Image;
                            image.SaveImage("C:\\Users\\romir\\Documents\\Visual Studio 2017\\Projects\\Transnetwork\\Person\\NEW" + x + ".bmp");



                            //onetime++;
                            // faceServiceClient = new FaceServiceClient("23c757e5234948b4a67015d008f287b1");

                            y++;
                            string personGroupId = "romir" + y;
                            y++;
                            await faceServiceClient.CreatePersonGroupAsync(personGroupId, "My Friends");

                            // Define Anna
                            CreatePersonResult friend1 = await faceServiceClient.CreatePersonAsync(
                                // Id of the person group that the person belonged to
                                personGroupId,
                                // Name of the person
                                "Anna" + y
                                );

                            const string friend1ImageDir = @"C:\Users\romir\Documents\Visual Studio 2017\Projects\Transnetwork\Person\";

                            foreach (string imagePath in Directory.GetFiles(friend1ImageDir, "*.jpg"))
                            {
                                using (Stream si = File.OpenRead(imagePath))
                                {
                                    // Detect faces in the image and add to Anna
                                    await faceServiceClient.AddPersonFaceAsync(
                                        personGroupId, friend1.PersonId, si);
                                }
                            }

                            await faceServiceClient.TrainPersonGroupAsync(personGroupId);

                            TrainingStatus trainingStatus = null;
                            while (true)
                            {
                                trainingStatus = await faceServiceClient.GetPersonGroupTrainingStatusAsync(personGroupId);

                                if (trainingStatus.Status.ToString() != "running")
                                {
                                    break;
                                }

                                await Task.Delay(5000);
                            }

                            //call API


                            bool authenticated = false;

                            const string friend2ImageDir = @"C:\Users\romir\Documents\Visual Studio 2017\Projects\Transnetwork\Secondary_DB_images\";

                            foreach (string imagePath in Directory.GetFiles(friend2ImageDir, "*.jpg"))
                            {
                                string testImageFile = imagePath;

                                using (Stream si = File.OpenRead(testImageFile))
                                {
                                    var faces = await faceServiceClient.DetectAsync(si);
                                    var faceIds = faces.Select(face => face.FaceId).ToArray();

                                    var results = await faceServiceClient.IdentifyAsync(personGroupId, faceIds);
                                    foreach (var identifyResult in results)
                                    {
                                        Console.WriteLine("Result of face: {0}", identifyResult.FaceId);
                                        if (identifyResult.Candidates.Length == 0)
                                        {
                                            Console.WriteLine("No one identified");
                                        }
                                        else
                                        {
                                            // Get top 1 among all candidates returned
                                            authenticated = true;
                                        }
                                    }
                                }
                                if (authenticated)
                                {
                                    throw new Exception();
                                    //alert
                                }
                            }



                            x++;
                        }
                    }
                }));
            };

            // Create local face detector.
            _localFaceDetector.Load("Data/haarcascade_frontalface_alt2.xml");
        }
Пример #20
0
        public MainWindow()
        {
            currentGroupId = currentGroupName;
            InitializeComponent();
            StartTimer();
            this.backgroundMusic             = SoundProvider.Ukulele;
            this.backgroundMusic.Volume      = 0.05;
            this.backgroundMusic.MediaEnded += new EventHandler((object sender, EventArgs e) => {
                this.backgroundMusic.Position = TimeSpan.Zero;
                this.backgroundMusic.Play();
            });
            this.backgroundMusic.Play();
            t.Elapsed += T_Elapsed;

            // Create grabber.
            _grabber = new FrameGrabber <LiveCameraResult>();

            updateMode(AppMode.Participants);

            // Set up a listener for when the client receives a new frame.
            _grabber.NewFrameProvided += (s, e) =>
            {
                if (_mode == AppMode.EmotionsWithClientFaceDetect)
                {
                    // Local face detection.
                    var rects = _localFaceDetector.DetectMultiScale(e.Frame.Image);
                    // Attach faces to frame.
                    e.Frame.UserData = rects;
                }

                // The callback may occur on a different thread, so we must use the
                // MainWindow.Dispatcher when manipulating the UI.
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    // Display the image in the left pane.
                    LeftImage.Source = e.Frame.Image.ToBitmapSource();


                    // If we're fusing client-side face detection with remote analysis, show the
                    // new frame now with the most recent analysis available.
                    if (_fuseClientRemoteResults)
                    {
                        RightImage.Source = VisualizeResult(e.Frame);
                    }
                }));

                if (DateTime.Now - currentTimeTaskStart > currentTimerTask)
                {
                    if (gameState == GameState.Explain)
                    {
                        roundStart = DateTime.Now;
                        nextRound();
                    }
                    else if (gameState == GameState.RoundBegin)
                    {
                        currentTimerTask     = TimeSpan.FromSeconds(15);
                        currentTimeTaskStart = DateTime.Now;
                        gameState            = GameState.Game;
                        roundStart           = DateTime.Now;
                    }
                    else if (gameState == GameState.Game)
                    {
                        currentTimerTask     = TimeSpan.FromSeconds(6);
                        currentTimeTaskStart = DateTime.Now;
                        gameState            = GameState.RoundEnd;
                        scoringSystem.AddRoundToGameScore();
                    }
                    else if (gameState == GameState.RoundEnd)
                    {
                        if (roundNumber == NumOfRounds)
                        {
                            this.sound = SoundProvider.TheWinner;
                            this.sound.Play();
                            currentTimerTask = TimeSpan.FromSeconds(3);
                            gameState        = GameState.GameEnd;
                            this.Dispatcher.BeginInvoke((Action)(() =>
                            {
                                StartEndImages();

                                button.Visibility = Visibility.Visible;
                            }));
                        }
                        else
                        {
                            nextRound();
                            roundStart = DateTime.Now;
                        }
                    }
                }
            };

            // Set up a listener for when the client receives a new result from an API call.
            _grabber.NewResultAvailable += (s, e) =>
            {
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    if (e.TimedOut)
                    {
                        MessageArea.Text = "API call timed out.";
                    }
                    else if (e.Exception != null)
                    {
                        string apiName = "";
                        string message = e.Exception.Message;
                        var faceEx = e.Exception as FaceAPIException;
                        var emotionEx = e.Exception as Microsoft.ProjectOxford.Common.ClientException;
                        var visionEx = e.Exception as Microsoft.ProjectOxford.Vision.ClientException;
                        if (faceEx != null)
                        {
                            apiName = "Face";
                            message = faceEx.ErrorMessage;
                        }
                        else if (emotionEx != null)
                        {
                            apiName = "Emotion";
                            message = emotionEx.Error.Message;
                        }
                        else if (visionEx != null)
                        {
                            apiName = "Computer Vision";
                            message = visionEx.Error.Message;
                        }
                        MessageArea.Text = string.Format("{0} API call failed on frame {1}. Exception: {2}", apiName, e.Frame.Metadata.Index, message);
                    }
                    else
                    {
                        _latestResultsToDisplay = e.Analysis;

                        // Display the image and visualization in the right pane.
                        if (!_fuseClientRemoteResults)
                        {
                            RightImage.Source = VisualizeResult(e.Frame);
                        }
                        if (gameState == GameState.Game || gameState == GameState.RoundBegin)
                        {
                            bool drawIndicator = false;
                            if (gameState == GameState.Game)
                            {
                                drawIndicator = true;
                            }
                            RightImage.Source = VisualizeTimer(drawIndicator);
                        }
                    }
                }));
            };

            // Create local face detector.
            _localFaceDetector.Load("Data/haarcascade_frontalface_alt2.xml");
        }
Пример #21
0
 public void SaveData(LiveCameraResult AnalysisFunction)
 {
     LogHelper.Log(LogTarget.Binary, AnalysisFunction, filePath);
 }
Пример #22
0
        public MainWindow()
        {
            InitializeComponent();
            LeftT.Visibility  = Visibility.Collapsed;
            RightT.Visibility = Visibility.Collapsed;
            VideoT.Visibility = Visibility.Collapsed;
            Emo.Visibility    = Visibility.Collapsed;
            // Create grabber.
            _grabber = new FrameGrabber <LiveCameraResult>();

            // Set up a listener for when the client receives a new frame.
            _grabber.NewFrameProvided += (s, e) =>
            {
                if (_mode == AppMode.EmotionsWithClientFaceDetect)
                {
                    // Local face detection.
                    var rects = _localFaceDetector.DetectMultiScale(e.Frame.Image);
                    // Attach faces to frame.
                    e.Frame.UserData = rects;
                }

                // The callback may occur on a different thread, so we must use the
                // MainWindow.Dispatcher when manipulating the UI.
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    // Display the image in the left pane.
                    LeftImage.Source = e.Frame.Image.ToBitmapSource();

                    // If we're fusing client-side face detection with remote analysis, show the
                    // new frame now with the most recent analysis available.
                    if (_fuseClientRemoteResults)
                    {
                        RightImage.Source = VisualizeResult(e.Frame);
                    }
                }));

                // See if auto-stop should be triggered.
                if (Properties.Settings.Default.AutoStopEnabled && (DateTime.Now - _startTime) > Properties.Settings.Default.AutoStopTime)
                {
                    _grabber.StopProcessingAsync();
                }
            };

            // Set up a listener for when the client receives a new result from an API call.
            _grabber.NewResultAvailable += (s, e) =>
            {
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    if (e.TimedOut)
                    {
                        MessageArea.Text = "API call timed out.";
                    }
                    else if (e.Exception != null)
                    {
                        string apiName = "";
                        string message = e.Exception.Message;
                        var faceEx = e.Exception as FaceAPIException;
                        var emotionEx = e.Exception as Microsoft.ProjectOxford.Common.ClientException;
                        var visionEx = e.Exception as Microsoft.ProjectOxford.Vision.ClientException;
                        if (faceEx != null)
                        {
                            apiName = "Face";
                            message = faceEx.ErrorMessage;
                        }
                        else if (emotionEx != null)
                        {
                            apiName = "Emotion";
                            message = emotionEx.Error.Message;
                        }
                        else if (visionEx != null)
                        {
                            apiName = "Computer Vision";
                            message = visionEx.Error.Message;
                        }
                        MessageArea.Text = string.Format("{0} API call failed on frame {1}. Exception: {2}", apiName, e.Frame.Metadata.Index, message);
                    }
                    else
                    {
                        if (e.Analysis.EmotionScores.Count() > 0)
                        {
                            var emotion = e.Analysis.EmotionScores.First().ToRankedList().First();
                            emotions.Add(startTime - DateTime.Now, emotion);

                            Console.WriteLine($"{emotion.Key}: {emotion.Value}");
                            string src = @"C:\Users\Uddal\Downloads\Compressed\Cognitive-Samples-VideoFrameAnalysis-master\Windows\Emo\";
                            Emo.Visibility = Visibility.Visible;
                            if (emotion.Key.Equals("Angry"))
                            {
                                Uri uri = new Uri(src + "angry.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Happiness"))
                            {
                                Uri uri = new Uri(src + "happy.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Contempt"))
                            {
                                Uri uri = new Uri(src + "contempt.jpg", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Disgust"))
                            {
                                Uri uri = new Uri(src + "disrupt.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Fear"))
                            {
                                Uri uri = new Uri(src + "fear.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Neutral"))
                            {
                                Uri uri = new Uri(src + "neutral.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Sadness"))
                            {
                                Uri uri = new Uri(src + "sad.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                            else if (emotion.Key.Equals("Surprise"))
                            {
                                Uri uri = new Uri(src + "surprise.png", UriKind.Absolute);
                                ImageSource imgSource = new BitmapImage(uri);
                                Emo.Source = imgSource;
                            }
                        }
                        _latestResultsToDisplay = e.Analysis;

                        // Display the image and visualization in the right pane.
                        if (!_fuseClientRemoteResults)
                        {
                            RightImage.Source = VisualizeResult(e.Frame);
                        }

                        /* int milliseconds = 2000;
                         * Thread.Sleep(milliseconds);*/
                    }
                }));
            };

            // Create local face detector.
            _localFaceDetector.Load("Data/haarcascade_frontalface_alt2.xml");
        }
Пример #23
0
        public MainWindow()
        {
            InitializeComponent();
            ServicePointManager.SecurityProtocol = SecurityProtocolType.Tls12;

            // Create grabber.
            _grabber = new FrameGrabber <LiveCameraResult>();

            // Set up a listener for when the client receives a new frame.
            _grabber.NewFrameProvided += (s, e) =>
            {
                // The callback may occur on a different thread, so we must use the
                // MainWindow.Dispatcher when manipulating the UI.
                this.Dispatcher.BeginInvoke((Action)(() =>
                {
                    // Display the image in the left pane.
                    LeftImage.Source = e.Frame.Image.ToBitmapSource();
                }));

                // See if auto-stop should be triggered.
                if (Properties.Settings.Default.AutoStopEnabled && (DateTime.Now - _startTime) > Properties.Settings.Default.AutoStopTime)
                {
                    _grabber.StopProcessingAsync().GetAwaiter().GetResult();
                }
            };

            // Set up a listener for when the client receives a new result from an API call.
            _grabber.NewResultAvailable += (s, e) =>
            {
                this.Dispatcher.BeginInvoke((Action)(async() =>
                {
                    if (e.TimedOut)
                    {
                        MessageArea.Text = "API call timed out.";
                    }
                    else if (e.Exception != null)
                    {
                        string apiName = "";
                        string message = e.Exception.Message;
                        var faceEx = e.Exception as FaceAPI.Models.APIErrorException;
                        if (faceEx != null)
                        {
                            apiName = "Face";
                            message = faceEx.Message;
                        }

                        MessageArea.Text = string.Format("{0} API call failed on frame {1}. Exception: {2}", apiName, e.Frame.Metadata.Index, message);
                    }
                    else
                    {
                        _latestResultsToDisplay = e.Analysis;
                        if (_latestResultsToDisplay != null && _latestResultsToDisplay.Faces.Any())
                        {
                            if (!string.IsNullOrWhiteSpace(DocumentImagePath))
                            {
                                MessageArea.Text = "Verificando Rostro...";
                                if (await FindSimilar(_latestResultsToDisplay))
                                {
                                    await _grabber.StopProcessingAsync();
                                }
                            }
                            else
                            {
                                MessageArea.Text = "Por favor seleccione una imagen";
                            }
                        }
                    }
                }));
            };
        }