Пример #1
0
        /// <summary>
        /// EQUATION 3
        /// </summary>
        private Vector <double> MotionDirection(Krill krill, int currentIteration)
        {
            Vector <double> alpha_local  = AlphaLocal(krill);                    // i-th Krill
            Vector <double> alpha_target = AlphaTarget(krill, currentIteration); // i-th Krill

            return(alpha_local + alpha_target);
        }
Пример #2
0
 /// <summary>
 /// EQUATION 15
 /// </summary>
 /// <returns></returns>
 private Vector <double> Beta_i_best(Krill krill)
 {
     if (krill.BestFitness > krill.Fitness)
     {
         return(X_i_j(krill.Coordinates, krill.BestCoordinates).Multiply(K_i_j(krill.Fitness, krill.BestFitness)));
     }
     else
     {
         return(Vector <double> .Build.Dense(krill.Coordinates.Count));
     }
 }
Пример #3
0
        /// <summary>
        /// EQUATION 10
        /// </summary>
        public Vector <double> GetForagingMotion(Krill krill, int currentIteration, Vector <double> vf_position)
        {
            int             lastIteration = currentIteration - 1;
            Vector <double> F_i_old       = ForagingSpeedHistory.ContainsKey(new Tuple <int, int>(lastIteration, krill.KrillNumber))
                ? ForagingSpeedHistory[new Tuple <int, int>(lastIteration, krill.KrillNumber)]
                : Vector <double> .Build.Dense(krill.Coordinates.Count);

            double          Omega_f = (0.1 + (0.8 * (1 - currentIteration / MaxIteration)));
            Vector <double> B_i     = (Beta_i_best(krill) + Beta_i_food(krill, lastIteration, vf_position)); // EQUATION 11
            Vector <double> F_i     = B_i.Multiply(V_f) + F_i_old.Multiply(Omega_f);                         // EQUATION 10

            ForagingSpeedHistory.Add(new Tuple <int, int>(currentIteration, krill.KrillNumber), F_i);

            return(F_i);
        }
Пример #4
0
        /// <summary>
        /// EQUATION 7
        /// </summary>
        private double SensingDistance(Krill krill)
        {
            double N = krillPopulation.Population.Count;

            double firstPart  = (1 / (5 * N));
            double secondPart = 0;

            foreach (var otherKrill in krillPopulation.Population)
            {
                secondPart += Distance.Euclidean(krill.Coordinates, otherKrill.Coordinates);
            }

            double result = firstPart * secondPart;

            return(Math.Round(result, 2));
        }
Пример #5
0
        private void PopulationInitialization()
        {
            // Population initialization
            List <Krill> Krills = new List <Krill>();

            for (int i = 1; i <= Parameters.Population; i++)
            {
                Krill krill = new Krill(i)
                {
                    Coordinates = Vector <double> .Build.Random(Parameters.Dimensions, new ContinuousUniform(Parameters.LB, Parameters.UB))
                };
                Krills.Add(krill);
            }

            Population = new KrillPopulation(Krills);
        }
Пример #6
0
        /// <summary>
        /// EQUATION 8
        /// </summary>
        private Vector <double> AlphaTarget(Krill krill, int currentIteration)
        {
            Krill bestKrill = KrillPopulation.GetBestKrill();

            if (bestKrill.Fitness > krill.Fitness)
            {
                double          K_i_best = K_i_j(krill.Fitness, bestKrill.Fitness);
                Vector <double> X_i_best = X_i_j(krill.Coordinates, bestKrill.Coordinates);
                double          C_best   = EffectiveCoefficient(currentIteration);

                return(X_i_best.Multiply(C_best * K_i_best));
            }
            else
            {
                return(Vector <double> .Build.Dense(krill.Coordinates.Count));
            }
        }
Пример #7
0
        /// <summary>
        /// EQUATION 2
        /// </summary>
        public Vector <double> GetInducedMotion(Krill krill, int currentIteration)
        {
            int lastIteration = currentIteration - 1;

            Vector <double> Alpha_i = MotionDirection(krill, currentIteration);
            Vector <double> N_old   = InducedSpeedHistory.ContainsKey(new Tuple <int, int>(lastIteration, krill.KrillNumber))
                ? InducedSpeedHistory[new Tuple <int, int>(lastIteration, krill.KrillNumber)]
                : Vector <double> .Build.Dense(krill.Coordinates.Count);

            double          Omega_n = (0.1 + (0.8 * (1 - currentIteration / MaxIteration)));
            Vector <double> N_new   = N_max * Alpha_i + Omega_n * N_old;

            // We add a krill to the history to know what the value of N_old is in later iterations
            InducedSpeedHistory.Add(new Tuple <int, int>(currentIteration, krill.KrillNumber), N_new);

            return(N_new);
        }
Пример #8
0
        /// <summary>
        /// EQUATION 13
        /// </summary>
        private Vector <double> Beta_i_food(Krill krill, int currentIteration, Vector <double> vf_position)
        {
            Vector <double> result = Vector <double> .Build.Dense(krill.Coordinates.Count);

            var K_food = FitnessFunction.Invoke(vf_position.ToArray());

            if (K_food > krill.Fitness)
            {
                double          C_food   = EffectiveFoodCoefficient(currentIteration);
                double          K_i_food = K_i_j(krill.Fitness, K_food);
                Vector <double> X_i_food = X_i_j(krill.Coordinates, vf_position);

                result = X_i_food.Multiply(K_i_food * C_food);
            }

            return(result);
        }
Пример #9
0
        /// <summary>
        /// EQUATION 4
        /// </summary>
        private Vector <double> AlphaLocal(Krill krill)
        {
            Vector <double> alphaLocal = Vector <double> .Build.Dense(krill.Coordinates.Count);

            var neighbourhood = Neighbourhood.GetNeighbourhood(krill);

            if (neighbourhood.Count == 0)
            {
                return(alphaLocal);
            }

            foreach (var neighbour in neighbourhood) // NN
            {
                var K_i_j_value = K_i_j(krill.Fitness, neighbour.Fitness);
                alphaLocal = alphaLocal.Add(X_i_j(krill.Coordinates, neighbour.Coordinates).Multiply(K_i_j_value)); // i-th Krill, j-th Krill Neighbour
            }

            return(alphaLocal);
        }
Пример #10
0
        /// <summary>
        /// Creates a neighborhood for a given krill
        /// </summary>
        public List <Krill> GetNeighbourhood(Krill krill)
        {
            List <Krill> neighbourhood   = new List <Krill>();
            double       sensingDistance = SensingDistance(krill);

            foreach (var neighbour in krillPopulation.Population)
            {
                if (neighbour.KrillNumber != krill.KrillNumber)
                {
                    // calculate the distance between one individual and the other
                    double distance = Distance.Euclidean(krill.Coordinates, neighbour.Coordinates);

                    // If the distance between two krills is less than "sensingDistance", then we add this krill to the neighborhood
                    if (distance < sensingDistance)
                    {
                        neighbourhood.Add(neighbour);
                    }
                }
            }

            return(neighbourhood);
        }