Пример #1
0
        protected void CalculateRegressionResults()
        {
            IEnumerable <double> estimatedTrainingValues = EstimatedTrainingValues; // cache values
            IEnumerable <double> originalTrainingValues  = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices);
            IEnumerable <double> estimatedTestValues     = EstimatedTestValues;     // cache values
            IEnumerable <double> originalTestValues      = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices);

            OnlineCalculatorError errorState;
            double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
            double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;

            double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
            double testMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestMeanAbsoluteError = errorState == OnlineCalculatorError.None ? testMAE : double.NaN;

            double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
            double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestRSquared = errorState == OnlineCalculatorError.None ? testR * testR : double.NaN;

            double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
            double testRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestRelativeError = errorState == OnlineCalculatorError.None ? testRelError : double.NaN;

            double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
            double testNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? testNMSE : double.NaN;

            TrainingRootMeanSquaredError = Math.Sqrt(TrainingMeanSquaredError);
            TestRootMeanSquaredError     = Math.Sqrt(TestMeanSquaredError);

            // BackwardsCompatibility3.3
            #region Backwards compatible code, remove with 3.5
            if (ContainsKey(TrainingMeanErrorResultName))
            {
                double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);
                TrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;
            }
            if (ContainsKey(TestMeanErrorResultName))
            {
                double testME = OnlineMeanErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);
                TestMeanError = errorState == OnlineCalculatorError.None ? testME : double.NaN;
            }
            #endregion
        }
        public static IEnumerable <Tuple <string, double> > CalculateImpacts(IRegressionSolution solution,
                                                                             DataPartitionEnum data            = DataPartitionEnum.Training,
                                                                             ReplacementMethodEnum replacement = ReplacementMethodEnum.Median)
        {
            var problemData = solution.ProblemData;
            var dataset     = problemData.Dataset;

            IEnumerable <int>    rows;
            IEnumerable <double> targetValues;
            double originalR2 = -1;

            OnlineCalculatorError error;

            switch (data)
            {
            case DataPartitionEnum.All:
                rows         = solution.ProblemData.AllIndices;
                targetValues = problemData.TargetVariableValues.ToList();
                originalR2   = OnlinePearsonsRCalculator.Calculate(problemData.TargetVariableValues, solution.EstimatedValues, out error);
                if (error != OnlineCalculatorError.None)
                {
                    throw new InvalidOperationException("Error during R² calculation.");
                }
                originalR2 = originalR2 * originalR2;
                break;

            case DataPartitionEnum.Training:
                rows         = problemData.TrainingIndices;
                targetValues = problemData.TargetVariableTrainingValues.ToList();
                originalR2   = solution.TrainingRSquared;
                break;

            case DataPartitionEnum.Test:
                rows         = problemData.TestIndices;
                targetValues = problemData.TargetVariableTestValues.ToList();
                originalR2   = solution.TestRSquared;
                break;

            default: throw new ArgumentException(string.Format("DataPartition {0} cannot be handled.", data));
            }


            var impacts           = new Dictionary <string, double>();
            var modifiableDataset = ((Dataset)dataset).ToModifiable();

            foreach (var inputVariable in problemData.AllowedInputVariables)
            {
                var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows, replacement);
                var newR2        = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error);
                if (error != OnlineCalculatorError.None)
                {
                    throw new InvalidOperationException("Error during R² calculation with replaced inputs.");
                }

                newR2 = newR2 * newR2;
                var impact = originalR2 - newR2;
                impacts[inputVariable] = impact;
            }
            return(impacts.OrderByDescending(i => i.Value).Select(i => Tuple.Create(i.Key, i.Value)));
        }
        private void CalculateTrainingPrognosisResults()
        {
            OnlineCalculatorError errorState;
            var problemData = Solution.ProblemData;

            if (!problemData.TrainingIndices.Any())
            {
                return;
            }
            var model = Solution.Model;
            //mean model
            double trainingMean = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices).Average();
            var    meanModel    = new ConstantModel(trainingMean);

            //AR1 model
            double alpha, beta;
            IEnumerable <double> trainingStartValues = problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Select(r => r - 1).Where(r => r > 0)).ToList();

            OnlineLinearScalingParameterCalculator.Calculate(problemData.Dataset.GetDoubleValues(problemData.TargetVariable, problemData.TrainingIndices.Where(x => x > 0)), trainingStartValues, out alpha, out beta, out errorState);
            var AR1model = new TimeSeriesPrognosisAutoRegressiveModel(problemData.TargetVariable, new double[] { beta }, alpha);

            var trainingHorizions = problemData.TrainingIndices.Select(r => Math.Min(trainingHorizon, problemData.TrainingPartition.End - r)).ToList();
            IEnumerable <IEnumerable <double> > trainingTargetValues         = problemData.TrainingIndices.Zip(trainingHorizions, Enumerable.Range).Select(r => problemData.Dataset.GetDoubleValues(problemData.TargetVariable, r)).ToList();
            IEnumerable <IEnumerable <double> > trainingEstimatedValues      = model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
            IEnumerable <IEnumerable <double> > trainingMeanModelPredictions = meanModel.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();
            IEnumerable <IEnumerable <double> > trainingAR1ModelPredictions  = AR1model.GetPrognosedValues(problemData.Dataset, problemData.TrainingIndices, trainingHorizions).ToList();

            IEnumerable <double> originalTrainingValues  = trainingTargetValues.SelectMany(x => x).ToList();
            IEnumerable <double> estimatedTrainingValues = trainingEstimatedValues.SelectMany(x => x).ToList();

            double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
            double trainingMAE = OnlineMeanAbsoluteErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanAbsoluteError = errorState == OnlineCalculatorError.None ? trainingMAE : double.NaN;
            double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
            double trainingRelError = OnlineMeanAbsolutePercentageErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingRelativeError = errorState == OnlineCalculatorError.None ? trainingRelError : double.NaN;
            double trainingNMSE = OnlineNormalizedMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingNormalizedMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingNMSE : double.NaN;
            double trainingME = OnlineMeanErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            PrognosisTrainingMeanError = errorState == OnlineCalculatorError.None ? trainingME : double.NaN;

            PrognosisTrainingDirectionalSymmetry         = OnlineDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
            PrognosisTrainingDirectionalSymmetry         = errorState == OnlineCalculatorError.None ? PrognosisTrainingDirectionalSymmetry : 0.0;
            PrognosisTrainingWeightedDirectionalSymmetry = OnlineWeightedDirectionalSymmetryCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingEstimatedValues, out errorState);
            PrognosisTrainingWeightedDirectionalSymmetry = errorState == OnlineCalculatorError.None ? PrognosisTrainingWeightedDirectionalSymmetry : 0.0;
            PrognosisTrainingTheilsUStatisticAR1         = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingAR1ModelPredictions, trainingEstimatedValues, out errorState);
            PrognosisTrainingTheilsUStatisticAR1         = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticAR1 : double.PositiveInfinity;
            PrognosisTrainingTheilsUStatisticMean        = OnlineTheilsUStatisticCalculator.Calculate(trainingStartValues, trainingTargetValues, trainingMeanModelPredictions, trainingEstimatedValues, out errorState);
            PrognosisTrainingTheilsUStatisticMean        = errorState == OnlineCalculatorError.None ? PrognosisTrainingTheilsUStatisticMean : double.PositiveInfinity;
        }
Пример #4
0
        public static double CalculateQuality(IEnumerable <double> targetValues, IEnumerable <double> estimatedValues)
        {
            OnlineCalculatorError errorState;
            var ret = OnlinePearsonsRCalculator.Calculate(targetValues, estimatedValues, out errorState);

            if (errorState != OnlineCalculatorError.None)
            {
                throw new InvalidOperationException("Error during calculation with replaced inputs.");
            }
            return(ret * ret);
        }
Пример #5
0
        protected void CalculateRegressionResults()
        {
            double[] estimatedTrainingValues = EstimatedTrainingValues.ToArray(); // cache values
            double[] originalTrainingValues  = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray();
            double[] estimatedTestValues     = EstimatedTestValues.ToArray();     // cache values
            double[] originalTestValues      = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray();

            OnlineCalculatorError errorState;
            double trainingMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingMeanSquaredError = errorState == OnlineCalculatorError.None ? trainingMSE : double.NaN;
            double testMSE = OnlineMeanSquaredErrorCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestMeanSquaredError = errorState == OnlineCalculatorError.None ? testMSE : double.NaN;

            double trainingR = OnlinePearsonsRCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            TrainingRSquared = errorState == OnlineCalculatorError.None ? trainingR * trainingR : double.NaN;
            double testR = OnlinePearsonsRCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            TestRSquared = errorState == OnlineCalculatorError.None ? testR * testR : double.NaN;

            double trainingNormalizedGini = NormalizedGiniCalculator.Calculate(originalTrainingValues, estimatedTrainingValues, out errorState);

            if (errorState != OnlineCalculatorError.None)
            {
                trainingNormalizedGini = double.NaN;
            }
            double testNormalizedGini = NormalizedGiniCalculator.Calculate(originalTestValues, estimatedTestValues, out errorState);

            if (errorState != OnlineCalculatorError.None)
            {
                testNormalizedGini = double.NaN;
            }

            TrainingNormalizedGiniCoefficient = trainingNormalizedGini;
            TestNormalizedGiniCoefficient     = testNormalizedGini;
        }
Пример #6
0
        public static IEnumerable <Tuple <string, double> > CalculateImpacts(
            IRegressionSolution solution,
            DataPartitionEnum data = DataPartitionEnum.Training,
            ReplacementMethodEnum replacementMethod             = ReplacementMethodEnum.Median,
            FactorReplacementMethodEnum factorReplacementMethod = FactorReplacementMethodEnum.Best)
        {
            var problemData = solution.ProblemData;
            var dataset     = problemData.Dataset;

            IEnumerable <int>    rows;
            IEnumerable <double> targetValues;
            double originalR2 = -1;

            OnlineCalculatorError error;

            switch (data)
            {
            case DataPartitionEnum.All:
                rows         = solution.ProblemData.AllIndices;
                targetValues = problemData.TargetVariableValues.ToList();
                originalR2   = OnlinePearsonsRCalculator.Calculate(problemData.TargetVariableValues, solution.EstimatedValues, out error);
                if (error != OnlineCalculatorError.None)
                {
                    throw new InvalidOperationException("Error during R² calculation.");
                }
                originalR2 = originalR2 * originalR2;
                break;

            case DataPartitionEnum.Training:
                rows         = problemData.TrainingIndices;
                targetValues = problemData.TargetVariableTrainingValues.ToList();
                originalR2   = solution.TrainingRSquared;
                break;

            case DataPartitionEnum.Test:
                rows         = problemData.TestIndices;
                targetValues = problemData.TargetVariableTestValues.ToList();
                originalR2   = solution.TestRSquared;
                break;

            default: throw new ArgumentException(string.Format("DataPartition {0} cannot be handled.", data));
            }

            var impacts           = new Dictionary <string, double>();
            var modifiableDataset = ((Dataset)dataset).ToModifiable();

            var inputvariables        = new HashSet <string>(problemData.AllowedInputVariables.Union(solution.Model.VariablesUsedForPrediction));
            var allowedInputVariables = dataset.VariableNames.Where(v => inputvariables.Contains(v)).ToList();

            // calculate impacts for double variables
            foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType <double>))
            {
                var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows, replacementMethod);
                var newR2        = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error);
                if (error != OnlineCalculatorError.None)
                {
                    throw new InvalidOperationException("Error during R² calculation with replaced inputs.");
                }

                newR2 = newR2 * newR2;
                var impact = originalR2 - newR2;
                impacts[inputVariable] = impact;
            }

            // calculate impacts for string variables
            foreach (var inputVariable in allowedInputVariables.Where(problemData.Dataset.VariableHasType <string>))
            {
                if (factorReplacementMethod == FactorReplacementMethodEnum.Best)
                {
                    // try replacing with all possible values and find the best replacement value
                    var smallestImpact = double.PositiveInfinity;
                    foreach (var repl in problemData.Dataset.GetStringValues(inputVariable, rows).Distinct())
                    {
                        var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows,
                                                                             Enumerable.Repeat(repl, dataset.Rows));
                        var newR2 = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error);
                        if (error != OnlineCalculatorError.None)
                        {
                            throw new InvalidOperationException("Error during R² calculation with replaced inputs.");
                        }

                        newR2 = newR2 * newR2;
                        var impact = originalR2 - newR2;
                        if (impact < smallestImpact)
                        {
                            smallestImpact = impact;
                        }
                    }
                    impacts[inputVariable] = smallestImpact;
                }
                else
                {
                    // for replacement methods shuffle and mode
                    // calculate impacts for factor variables

                    var newEstimates = EvaluateModelWithReplacedVariable(solution.Model, inputVariable, modifiableDataset, rows,
                                                                         factorReplacementMethod);
                    var newR2 = OnlinePearsonsRCalculator.Calculate(targetValues, newEstimates, out error);
                    if (error != OnlineCalculatorError.None)
                    {
                        throw new InvalidOperationException("Error during R² calculation with replaced inputs.");
                    }

                    newR2 = newR2 * newR2;
                    var impact = originalR2 - newR2;
                    impacts[inputVariable] = impact;
                }
            } // foreach
            return(impacts.OrderByDescending(i => i.Value).Select(i => Tuple.Create(i.Key, i.Value)));
        }
        public double Calculate(IEnumerable <double> originalValues, IEnumerable <double> estimatedValues, out OnlineCalculatorError errorState)
        {
            var r = OnlinePearsonsRCalculator.Calculate(originalValues, estimatedValues, out errorState);

            return(r * r);
        }
        public static double Calculate(IEnumerable <double> first, IEnumerable <double> second, out OnlineCalculatorError errorState)
        {
            var r = OnlinePearsonsRCalculator.Calculate(first, second, out errorState);

            return(r * r);
        }