Пример #1
0
 public void DistBetwTwoClasses(int n1, int n2, double[][] arr, List <Myimage> temp1, List <Myimage> temp2)
 {
     for (int j = 0; j < n1; j++)
     {
         for (int k = 0; k < n2; k++)
         {
             { arr[j][k] = PerceptiveHash.hamming(temp1[j].Hash, temp2[k].Hash); }
         }
     }
 }
Пример #2
0
 public void DistAtOneClass(int n, double[][] arr, List <Myimage> temp)
 {
     for (int j = 0; j < n; j++)
     {
         for (int k = 0; k < n; k++)
         {
             { if (j != k)
               {
                   arr[j][k] = PerceptiveHash.hamming(temp[j].Hash, temp[k].Hash);
               }
             }
         }
     }
 }
Пример #3
0
        public string Recognize(Myimage X)
        {
            Myimage k   = new Myimage();
            double  min = PerceptiveHash.hamming(X.Hash, etal1[0].Hash);

            for (int i = 0; i < etal1.Count; i++)
            {
                Int64 h = PerceptiveHash.hamming(X.Hash, etal1[i].Hash);
                if (min >= h)
                {
                    min = h; k = etal1[i];
                }
            }
            return(k.DirectoryPath);
        }
Пример #4
0
 public void CheckHash(RadioButton rb1, RadioButton rb2, RadioButton rb3, RadioButton rb4, BitmapImage bm1, Myimage m)
 {
     if (rb1.IsChecked == true)
     {
         m.Hash = PerceptiveHash.aHash(bm1);
     }
     if (rb2.IsChecked == true)
     {
         m.Hash = PerceptiveHash.pHash(bm1);
     }
     if (rb3.IsChecked == true)
     {
         m.Hash = PerceptiveHash.dHash(bm1);
     }
     if (rb4.IsChecked == true)
     {
         m.Hash = PerceptiveHash.gHash(bm1);
     }
 }
Пример #5
0
        public void FindGroup()
        {
            rez = new List <Int64>();
            string s    = Interaction.InputBox("Enter % of similarity");
            double perc = int.Parse(s);

            perc = Math.Round(perc * 0.64);
            ListOfClusters.Clear();
            for (int k = 0; k < imglist.Count; k++)
            {
                ListOfClusters.Add(new Cluster());
            }
            List <Myimage> tmp = new List <Myimage>();

            for (int i = 0; i < imglist.Count; i++)
            {
                prbar.Dispatcher.Invoke(() => prbar.Value++, DispatcherPriority.Background);
                int p = 0;
                for (int k = 0; k < ListOfClusters.Count; k++)
                {
                    if (ListOfClusters[k].ImgInCluster.Contains(imglist[i]))
                    {
                        p++;
                    }
                }
                if (p == 0)
                {
                    ListOfClusters[i].ImgInCluster.Add(imglist[i]); tmp.Add(imglist[i]);
                }
                for (int j = 0; j < imglist.Count; j++)
                {
                    Int64 ham = PerceptiveHash.hamming(imglist[i].Hash, imglist[j].Hash);
                    if ((ham <= (64 - perc)) && (i != j) && (!tmp.Contains(imglist[j])))
                    {
                        ListOfClusters[i].ImgInCluster.Add(imglist[j]);
                        tmp.Add(imglist[j]);
                    }
                }
            }
        }
Пример #6
0
        public void FindSimilar(Myimage m)
        {
            wrp.Children.Clear();
            string s    = Interaction.InputBox("Enter % of similarity");
            double perc = int.Parse(s);

            perc = Math.Round(perc * 0.64);
            List <Myimage> similarList = new List <Myimage>();

            for (int j = 0; j < imglist.Count; j++)
            {
                Int64 ham = PerceptiveHash.hamming(m.Hash, imglist[j].Hash);
                if (ham <= (64 - perc))
                {
                    similarList.Add(imglist[j]);
                }
            }
            for (int i = 0; i < similarList.Count; i++)
            {
                Uri uriSource = new Uri(similarList[i].ImagePath);
                bm1 = new BitmapImage();
                bm1.BeginInit();
                bm1.UriSource = uriSource;
                bm1.EndInit();
                System.Windows.Controls.Image im = new System.Windows.Controls.Image();
                im.Source      = bm1; im.Width = 100; im.Height = 75;
                im.MouseEnter += new MouseEventHandler(OnMouseEnterHandler);
                im.MouseLeave += new MouseEventHandler(OnMouseLeaveHandler);
                ToolTip tooltip = new ToolTip {
                    Content = similarList[i].ImagePath
                };
                im.ToolTip = tooltip;
                im.Margin  = new Thickness(5, 5, 5, 5);
                wrp.Children.Add(im); scrollv.ScrollToBottom();
            }
        }
Пример #7
0
        public void clusterDend()
        {
            ListOfClusters.Clear();
            iterations = new List <Iteration>();
            // ListOfObj = new List<Myimage>();
            // ListOfObj = imglist.GetRange(0, imglist.Count);
            for (int k = 0; k < imglist.Count; k++)
            {
                ListOfClusters.Add(new Cluster());
                ListOfClusters[k].ImgInCluster.Add(imglist[k]);
            }

            n = 1;
            double[,] data = new double[imglist.Count, imglist.Count];

            for (int i = 0; i < imglist.Count; i++)
            {
                for (int j = 0; j < imglist.Count; j++)
                {
                    data[i, j] = PerceptiveHash.hamming(imglist[i].Hash, imglist[j].Hash);
                }
            }

            RowsCount    = imglist.Count;
            ColumnsCount = imglist.Count;
            List <List <double> > matrix = new List <List <double> >(RowsCount + 1);

            for (int i = 0; i < RowsCount; i++)
            {
                var list = new List <double>(ColumnsCount);
                for (int j = 0; j < ColumnsCount; j++)
                {
                    list.Add(data[i, j]);
                }
                matrix.Add(list);
            }
            var list1 = new List <double>(ColumnsCount);

            for (int j = 0; j < ColumnsCount; j++)
            {
                list1.Add(j);
            }
            matrix.Add(list1);
            order = new List <List <int> >();
            for (int i = 0; i < imglist.Count; i++)
            {
                order.Add(new List <int>());
                order[i].Add(i);
            }
            orderlist = new List <Order>();
            max       = 0;
            iterations.Add(new Iteration {
                Clusters = Copy2(ListOfClusters)
            });

            while (ListOfClusters.FindAll(i => (i.ImgInCluster.Count != 0)).Count != n)
            {
                min = MinValue(matrix, out index1, out index2);
                if (min > max)
                {
                    max = min;
                }
                double d1 = 0; double d2 = 0;

                for (int i = 0; i < ColumnsCount; i++)
                {
                    if (index1 != i)
                    {
                        d1 = matrix[index1][i];
                        d2 = matrix[index2][i];
                        matrix[index1][i] = (d1 + d2) / 2;
                        matrix[i][index1] = (d1 + d2) / 2;
                    }
                }
                orderlist.Add(new Hashes.Order {
                    set1 = Copy(order[Convert.ToInt32(matrix[RowsCount][index1])]), set2 = Copy(order[Convert.ToInt32(matrix[RowsCount][index2])]), dist = min
                });
                order[Convert.ToInt32(matrix[RowsCount][index1])].AddRange(order[Convert.ToInt32(matrix[RowsCount][index2])]);
                order[Convert.ToInt32(matrix[RowsCount][index2])].Clear();
                ListOfClusters[Convert.ToInt32(matrix[RowsCount][index1])].ImgInCluster.AddRange(ListOfClusters[Convert.ToInt32(matrix[RowsCount][index2])].ImgInCluster);
                ListOfClusters[Convert.ToInt32(matrix[RowsCount][index2])].ImgInCluster.Clear();
                iterations.Add(new Iteration {
                    Clusters = Copy2(ListOfClusters)
                });
                RemoveRow(index2, matrix);
                RemoveColumn(index2, matrix);
            }
            PaintDend();
        }