Пример #1
0
        /// <summary>
        /// 计算绕地航天器主要的加速度。
        ///   Computes the acceleration of an Earth orbiting satellite due to
        ///    - the Earth's harmonic gravity field,
        ///    - the gravitational perturbations of the Sun and Moon
        ///    - the solar radiation pressure and
        ///    - the atmospheric drag
        /// </summary>
        /// <param name="Mjd_TT"> Mjd_TT  Terrestrial Time (Modified Julian Date)</param>
        /// <param name="satXyzIcrf"> r 卫星在国际天球参考框架的位置  Satellite position vector in the ICRF/EME2000 system</param>
        /// <param name="satVelocityIcrf"> v 卫星在国际天球参考框架的速度 Satellite velocity vector in the ICRF/EME2000 system</param>
        /// <param name="Area">  Area    Cross-section </param>
        /// <param name="mass">  mass 质量  Spacecraft mass</param>
        /// <param name="solarRadiPresCoeff"> coefOfRadiation  光压系数  Radiation pressure coefficient</param>
        /// <param name="atmDragCoefficient"> coefOfDrag  大气阻力系数  Drag coefficient</param>
        /// <returns> Acceleration (a=d^2r/dt^2) in the ICRF/EME2000 system</returns>
        public static Geo.Algorithm.Vector AccelerOfMainForces(double Mjd_TT, Geo.Algorithm.Vector satXyzIcrf, Geo.Algorithm.Vector satVelocityIcrf, double Area, double mass, double solarRadiPresCoeff, double atmDragCoefficient)
        {
            double Mjd_UT1;

            Geo.Algorithm.Vector a = new Geo.Algorithm.Vector(3), r_Sun = new Geo.Algorithm.Vector(3), r_Moon = new Geo.Algorithm.Vector(3);
            Matrix T = new Matrix(3, 3), E = new Matrix(3, 3);

            // Acceleration due to harmonic gravity field
            Mjd_UT1 = Mjd_TT;

            T = IERS.NutMatrix(Mjd_TT) * IERS.PrecessionMatrix(MJD_J2000, Mjd_TT);
            E = IERS.GreenwichHourAngleMatrix(Mjd_UT1) * T;

            a = AccelerOfHarmonicGraviFiled(satXyzIcrf, E, Grav.GM, Grav.R_ref, Grav.CS, Grav.n_max, Grav.m_max);

            // Luni-solar perturbations
            r_Sun  = CelestialUtil.Sun(Mjd_TT);
            r_Moon = CelestialUtil.Moon(Mjd_TT);

            a += AccelerOfPointMass(satXyzIcrf, r_Sun, OrbitConsts.GM_Sun);
            a += AccelerOfPointMass(satXyzIcrf, r_Moon, OrbitConsts.GM_Moon);

            // Solar radiation pressure
            a += CelestialUtil.Illumination(satXyzIcrf, r_Sun) * AccelerOfSolarRadiPressure(satXyzIcrf, r_Sun, Area, mass, solarRadiPresCoeff, OrbitConsts.PressureOfSolarRadiationPerAU, AU);

            // Atmospheric drag
            a += AccelerDragOfAtmos(Mjd_TT, satXyzIcrf, satVelocityIcrf, T, Area, mass, atmDragCoefficient);

            // Acceleration
            return(a);
        }
Пример #2
0
        static void Main0(string[] args)
        {
            // Variables

            int    i;                                               // Loop counter
            double MJD_GPS, MJD_TT;                                 // Modified Julian Date (GPS,TT)
            double MJD_UTC, MJD_UT1;                                // Modified Julian Date (UTC,UT1)
            Matrix P = new Matrix(3, 3), N = new Matrix(3, 3);      // Precession/nutation matrix
            Matrix Theta = new Matrix(3, 3);                        // Sidereal Time matrix
            Matrix S = new Matrix(3, 3), dTheta = new Matrix(3, 3); // and derivative
            Matrix Pi = new Matrix(3, 3);                           // Polar motion matrix
            Matrix U = new Matrix(3, 3), dU = new Matrix(3, 3);     // ICRS to ITRS transformation and derivative
            Vector r_WGS = new Vector(3), v_WGS = new Vector(3);    // Position/velocity in the Earth-fixed frame
            Vector r = new Vector(3), v = new Vector(3);            // Position/velocity in the ICRS
            Vector y = new Vector(6), Kep = new Vector(6);          // Satte vector and Keplerian elements


            // Header
            var endl = "\r\n";
            var info = "Exercise 5-2: Velocity in the Earth-fixed frame"
                       + endl + endl;

            Console.WriteLine(info);

            // Earth Orientation Parameters (UT1-UTC[s],UTC-TAI[s], x["], y["])
            // (from IERS Bulletin B #135 and C #16; valid for 1999/03/04 0:00 UTC)

            IERS IERS = new IERS(0.6492332, -32.0, 0.06740, 0.24173);

            // Date

            MJD_GPS = DateUtil.DateToMjd(1999, 03, 04, 0, 0, 0.0);

            MJD_UTC = MJD_GPS - IERS.GetGPS_UTC(MJD_GPS) / 86400.0;
            MJD_UT1 = MJD_UTC + IERS.GetUT1_UTC(MJD_UTC) / 86400.0;
            MJD_TT  = MJD_UTC + IERS.GetTT_UTC(MJD_UTC) / 86400.0;

            // Earth-fixed state vector of GPS satellite #PRN15
            // (from NIMA ephemeris nim09994.eph; WGS84(G873) system)

            r_WGS = new Vector(19440.953805e+3, 16881.609273e+3, -6777.115092e+3);  // [m]
            v_WGS = new Vector(-8111.827456e-1, -2573.799137e-1, -30689.508125e-1); // [m/s]


            // ICRS to ITRS transformation matrix and derivative

            P     = IERS.PrecessionMatrix(OrbitConsts.MJD_J2000, MJD_TT); // IAU 1976 Precession
            N     = IERS.NutMatrix(MJD_TT);                               // IAU 1980 Nutation
            Theta = IERS.GreenwichHourAngleMatrix(MJD_UT1);               // Earth rotation
            Pi    = IERS.PoleMatrix(MJD_UTC);                             // Polar motion

            S[0, 1] = 1.0; S[1, 0] = -1.0;                                // Derivative of Earth rotation
            dTheta  = OrbitConsts.RotationSpeedOfEarth_Rad * S * Theta;   // matrix [1/s]

            U  = Pi * Theta * N * P;                                      // ICRS to ITRS transformation
            dU = Pi * dTheta * N * P;                                     // Derivative [1/s]

            // Transformation from WGS to ICRS

            r = U.Transpose() * r_WGS;
            v = U.Transpose() * v_WGS + dU.Transpose() * r_WGS;

            // Orbital elements

            y   = r.Stack(v);
            Kep = Kepler.Elements(OrbitConsts.GM_Earth, y);


            // Output

            info = "Date" + endl + endl
                   + " " + DateUtil.MjdToDateTimeString(MJD_GPS) + " GPS" + endl
                   + " " + DateUtil.MjdToDateTimeString(MJD_UTC) + " UTC" + endl
                   + " " + DateUtil.MjdToDateTimeString(MJD_UT1) + " UT1" + endl
                   + " " + DateUtil.MjdToDateTimeString(MJD_TT) + " TT " + endl + endl;

            Console.WriteLine(info);
            info  = "WGS84 (G873) State vector:" + endl + endl;
            info += "  Position       ";
            for (i = 0; i < 3; i++)
            {
                info += String.Format("{0, 10:F6}", r_WGS[i] / 1000.0);
            }
            ;
            info += "  [km]";
            Console.WriteLine(info);
            info = "  Velocity       ";
            for (i = 0; i < 3; i++)
            {
                info += String.Format("{0, 10:F6}", v_WGS[i] / 1000.0);
            }
            ;
            info += "  [km/s]" + endl + endl;
            Console.WriteLine(info);
            info = "ICRS-ITRS transformation" + endl + endl
                   + String.Format("{0, 10:F6}", U) + endl;

            info += "Derivative of ICRS-ITRS transformation [10^(-4)/s]" + endl + endl
                    + String.Format("{0, 10:F6}", dU * 1.0e4) + endl;

            info += "ICRS State vector:" + endl;
            Console.WriteLine(info);
            info = "  Position       ";
            for (i = 0; i < 3; i++)
            {
                info += String.Format("{0, 14:F6}", r[i] / 1000.0);
            }
            ;
            info += "  [km]";
            Console.WriteLine(info);
            info = "  Velocity       ";
            for (i = 0; i < 3; i++)
            {
                info += String.Format("{0, 14:F6}", v[i] / 1000.0);
            }
            ;
            info += "  [km/s]" + endl + endl;
            Console.WriteLine(info);
            info = "Orbital elements:" + endl + endl
                   + "  Semimajor axis   " + String.Format("{0, 10:F3}", Kep[0] / 1000.0) + " km" + endl
                   + "  Eccentricity     " + String.Format("{0, 10:F7}", Kep[1]) + endl
                   + "  Inclination      " + String.Format("{0, 10:F3}", Kep[2] * OrbitConsts.DegPerRad) + " deg" + endl
                   + "  RA ascend. node  " + String.Format("{0, 10:F3}", Kep[3] * OrbitConsts.DegPerRad) + " deg" + endl
                   + "  Arg. of perigee  " + String.Format("{0, 10:F3}", Kep[4] * OrbitConsts.DegPerRad) + " deg" + endl
                   + "  Mean anomaly     " + String.Format("{0, 10:F3}", Kep[5] * OrbitConsts.DegPerRad) + " deg" + endl;

            Console.WriteLine(info);

            Console.ReadKey();
        }
        static void Main0(string[] args)
        {
            // Variables

            double MJD_UTC;                  // Modified Julian Date (UTC)
            double MJD_UT1;                  // Modified Julian Date (UTC)
            double MJD_TT;                   // Modified Julian Date (TT)
            Matrix P     = new Matrix(3, 3); // Precession matrix (ICRS -> mean-of-date)
            Matrix N     = new Matrix(3, 3); // Nutation matrix (mean-of-date -> true-of-date)
            Matrix Theta = new Matrix(3, 3); // Sidereal Time matrix (tod -> pseudo-Earth-fixed)
            Matrix Pi    = new Matrix(3, 3); // Polar motion matrix (pseudo-Earth-fixed -> ITRS)


            // Header

            var info = "Exercise 5-1: Transformation from celestial "
                       + "to terrestrial reference system" + "\r\n";

            Console.WriteLine(info);


            // Earth Orientation Parameters (UT1-UTC[s],UTC-TAI[s], x["], y["])
            // (from IERS Bulletin B #135 and C #16; valid for 1999/03/04 0:00 UTC)

            IERS IERS = new IERS(0.6492332, -32.0, 0.06740, 0.24173);


            // Date

            MJD_UTC = DateUtil.DateToMjd(1999, 03, 04, 0, 0, 0.0);
            MJD_UT1 = MJD_UTC + IERS.GetUT1_UTC(MJD_UTC) / 86400.0;
            MJD_TT  = MJD_UTC + IERS.GetTT_UTC(MJD_UTC) / 86400.0;

            // IAU 1976 Precession
            // (ICRF to mean equator and equinox of date)

            P = IERS.PrecessionMatrix(OrbitConsts.MJD_J2000, MJD_TT);

            // IAU 1980 Nutation
            // (Transformation to the true equator and equinox)

            N = IERS.NutMatrix(MJD_TT);

            // Apparent Sidereal Time
            // Rotation about the Celestial Ephemeris Pole

            Theta = IERS.GreenwichHourAngleMatrix(MJD_UT1);   // Note: here we evaluate the equation of the
            // equinoxes with the MJD_UT1 time argument
            // (instead of MJD_TT)

            // Polar motion
            // (Transformation from the CEP to the IRP of the ITRS)

            Pi = IERS.PoleMatrix(MJD_UTC);     // Note: the time argument of polar motion series
            // is not rigorously defined, but any differences
            // are negligible

            // Output
            var endl = "\r\n";

            info = "Date" + "\r\n"
                   + " " + DateUtil.MjdToDateTimeString(MJD_UTC) + " UTC" + endl
                   + " " + DateUtil.MjdToDateTimeString(MJD_UT1) + " UT1" + endl
                   + " " + DateUtil.MjdToDateTimeString(MJD_TT) + " TT " + endl + endl + endl;
            Console.WriteLine(info);
            info = "IAU 1976 Precession matrix (ICRS to tod)" + endl
                   + P.ToString();
            Console.WriteLine(info);
            info = "IAU 1980 Nutation matrix (tod to mod)" + endl
                   + N.ToString();

            Console.WriteLine(info);
            info = "Earth Rotation matrix" + endl
                   + Theta.ToString();

            Console.WriteLine(info);
            info = "Polar motion matrix" + endl
                   + Pi.ToString();
            Console.WriteLine(info);
            info = "ICRS-ITRS transformation" + endl
                   + (Pi * Theta * N * P).ToString();
            Console.WriteLine(info);

            Console.ReadKey();
        }