public Regression(DoubleSeries series1, DoubleSeries series2, double alpha, double beta) { this.graph = new Graph(); this.series1 = series1; this.series2 = series2; this.graph.LineEnabled = false; this.graph.MarkerSize = 1; }
public Graph GetCorrelogram(int lag1, int lag2) { Graph graph = new Graph(); for (int i = lag1; i <= lag2; ++i) graph.Add((double)i, this.GetAutoCorrelation(i)); return graph; }
public TKohonenMap() : base() { this.en8Br1nJcm = (TNeuralDataSet) null; this.NZFB8Hsyyk = (Histogram2D) null; this.lHWBj2LFHb = (Graph) null; this.L2kBAuWI5g = this.yem372767; }
public void DrawData(int X, int Y) { if (this.lHWBj2LFHb == null) { this.lHWBj2LFHb = new Graph("graph"); this.lHWBj2LFHb.Style = EGraphStyle.Scatter; this.lHWBj2LFHb.MarkerSize = 1; } for (int Seek = 0; Seek < this.en8Br1nJcm.GetNData(); ++Seek) { double[] input = this.en8Br1nJcm.GetInput(Seek); this.lHWBj2LFHb.Add(input[X], input[Y]); } this.lHWBj2LFHb.Draw(); }
private void P2odmXxb0() { this.x0pBGNZNEv = new TInputNeuron[this.fNInput]; for (int index = 0; index < this.fNInput; ++index) this.x0pBGNZNEv[index] = new TInputNeuron(); this.C4gBBYR9YW = new TKohonenNeuron[this.crqUrCA6J, this.R00zPKwYO]; for (int Col = 0; Col < this.crqUrCA6J; ++Col) { for (int Row = 0; Row < this.R00zPKwYO; ++Row) this.C4gBBYR9YW[Col, Row] = new TKohonenNeuron(this, Col, Row); } for (int index1 = 0; index1 < this.fNInput; ++index1) { for (int index2 = 0; index2 < this.crqUrCA6J; ++index2) { for (int index3 = 0; index3 < this.R00zPKwYO; ++index3) this.C4gBBYR9YW[index2, index3].Connect((TNeuron) this.x0pBGNZNEv[index1]); } } this.NZFB8Hsyyk = (Histogram2D) null; this.lHWBj2LFHb = (Graph) null; this.M7SYu5gxf = EKohonenTopology.Rectangular; this.a8fxHLKhg = EKohonenKernel.Bubble; this.g5ykpFFS7 = 0.05; this.yem372767 = 10.0; }
public void Configure() { this.fInputLayer = (TNeuralLayer) new TInputNeuralLayer(this.fNInput, true); TNeuralLayer Layer = (TNeuralLayer) new THiddenNeuralLayer(this.kB5uny9D9); Layer.Connect(this.fInputLayer); this.rCHgEckPw = new ArrayList(); this.HnCyxyTcM = 1; this.rCHgEckPw.Add((object) Layer); this.fOutputLayer = (TNeuralLayer) new TOutputNeuralLayer(this.fNOutput, this.wAeTg5Tjg); this.fOutputLayer.Connect(Layer); this.fOutput = new double[this.fNOutput]; this.cGqCj2YUM = new double[this.fNOutput]; this.fMaxNX = Math.Max(this.fNInput + 1, this.fNOutput); this.fMaxNX = Math.Max(this.fMaxNX, this.kB5uny9D9 + 1); this.fMaxNY = 3; this.fNPattern = 0; this.wm8s050QY = 0.0; this.MSg9cpEpW = 0.0; this.V8laR9xb7 = new Graph(); this.V8laR9xb7.Title = "title"; this.V8laR9xb7.LineColor = Color.Red; this.XOwvCEen2 = new Graph(); this.XOwvCEen2.Title = "title"; this.XOwvCEen2.LineColor = Color.Blue; this.x1tDaZE2v = false; }
public void ResetError() { this.V8laR9xb7 = new Graph(); this.V8laR9xb7.Title = "title"; this.V8laR9xb7.LineColor = Color.Red; this.XOwvCEen2 = new Graph(); this.XOwvCEen2.Title = "title"; this.XOwvCEen2.LineColor = Color.Blue; }