Наследование: BasicLayer, IContextClearable
Пример #1
0
        /// <summary>
        /// Generate a Jordan neural network.
        /// </summary>
        /// <returns>A Jordan neural network.</returns>
        public BasicNetwork Generate()
        {
            // construct an Jordan type network
            ILayer input = new BasicLayer(this.activation, false,
                   this.inputNeurons);
            ILayer hidden = new BasicLayer(this.activation, true,
                   this.hiddenNeurons);
            ILayer output = new BasicLayer(this.activation, true,
                   this.outputNeurons);
            ILayer context = new ContextLayer(this.outputNeurons);
            BasicNetwork network = new BasicNetwork();
            network.AddLayer(input);
            network.AddLayer(hidden);
            network.AddLayer(output);

            output.AddNext(context, SynapseType.OneToOne);
            context.AddNext(hidden);

            int y = PatternConst.START_Y;
            input.X = PatternConst.START_X;
            input.Y = y;
            y += PatternConst.INC_Y;
            hidden.X = PatternConst.START_X;
            hidden.Y = y;
            context.X = PatternConst.INDENT_X;
            context.Y = y;
            y += PatternConst.INC_Y;
            output.X = PatternConst.START_X;
            output.Y = y;

            network.Structure.FinalizeStructure();
            network.Reset();
            return network;
        }
        /// <summary>
        /// Load the specified Encog object from an XML reader.
        /// </summary>
        /// <param name="xmlIn">The XML reader to use.</param>
        /// <returns>The loaded object.</returns>
        public IEncogPersistedObject Load(ReadXML xmlIn)
        {
            int neuronCount = 0;
            int x = 0;
            int y = 0;
            double biasActivation = 1;
            String threshold = null;
            IActivationFunction activation = null;
            String end = xmlIn.LastTag.Name;
            String context = null;

            while (xmlIn.ReadToTag())
            {
                if (xmlIn.IsIt(BasicLayerPersistor.TAG_ACTIVATION, true))
                {
                    xmlIn.ReadToTag();
                    String type = xmlIn.LastTag.Name;
                    activation = BasicLayerPersistor.LoadActivation(type, xmlIn);
                }
                else if (xmlIn.IsIt(BasicLayerPersistor.PROPERTY_NEURONS, true))
                {
                    neuronCount = xmlIn.ReadIntToTag();
                }
                else if (xmlIn.IsIt(BasicLayerPersistor.PROPERTY_X, true))
                {
                    x = xmlIn.ReadIntToTag();
                }
                else if (xmlIn.IsIt(BasicLayerPersistor.PROPERTY_Y, true))
                {
                    y = xmlIn.ReadIntToTag();
                }
                else if (xmlIn.IsIt(BasicLayerPersistor.PROPERTY_THRESHOLD, true))
                {
                    threshold = xmlIn.ReadTextToTag();
                }
                else if (xmlIn.IsIt(PROPERTY_CONTEXT, true))
                {
                    context = xmlIn.ReadTextToTag();
                }
                else if (xmlIn.IsIt(BasicLayerPersistor.PROPERTY_BIAS_ACTIVATION, true))
                {
                    biasActivation = double.Parse(xmlIn.ReadTextToTag());
                }
                else if (xmlIn.IsIt(end, false))
                {
                    break;
                }
            }

            if (neuronCount > 0)
            {
                ContextLayer layer;

                if (threshold == null)
                {
                    layer = new ContextLayer(activation, false, neuronCount);
                }
                else
                {
                    double[] t = NumberList.FromList(CSVFormat.EG_FORMAT, threshold);
                    layer = new ContextLayer(activation, true, neuronCount);
                    for (int i = 0; i < t.Length; i++)
                    {
                        layer.BiasWeights[i] = t[i];
                    }
                }

                if (context != null)
                {
                    double[] c = NumberList.FromList(CSVFormat.EG_FORMAT, context);

                    for (int i = 0; i < c.Length; i++)
                    {
                        layer.Context[i] = c[i];
                    }
                }

                layer.X = x;
                layer.Y = y;
                layer.BiasActivation = biasActivation;

                return layer;
            }
            return null;
        }
Пример #3
0
        /// <summary>
        /// Generate the RSOM network.
        /// </summary>
        /// <returns>The neural network.</returns>
        public BasicNetwork Generate()
        {
            ILayer output = new BasicLayer(new ActivationLinear(), false,
                    this.outputNeurons);
            ILayer input = new BasicLayer(new ActivationLinear(), false,
                    this.inputNeurons);

            BasicNetwork network = new BasicNetwork();
            ILayer context = new ContextLayer(this.outputNeurons);
            network.AddLayer(input);
            network.AddLayer(output);

            output.AddNext(context, SynapseType.OneToOne);
            context.AddNext(input);

            int y = PatternConst.START_Y;
            input.X = PatternConst.START_X;
            input.Y = y;

            context.X = PatternConst.INDENT_X;
            context.Y = y;

            y += PatternConst.INC_Y;

            output.X = PatternConst.START_X;
            output.Y = y;

            network.Structure.FinalizeStructure();
            network.Reset();
            return network;
        }