Range() публичный Метод

Generate a random number in the specified range.
public Range ( double min, double max ) : double
min double The minimum random number.
max double The maximum random number.
Результат double
        /// <summary>
        /// Generate a random training set. 
        /// </summary>
        /// <param name="seed">The seed value to use, the same seed value will always produce
        /// the same results.</param>
        /// <param name="count">How many training items to generate.</param>
        /// <param name="inputCount">How many input numbers.</param>
        /// <param name="idealCount">How many ideal numbers.</param>
        /// <param name="min">The minimum random number.</param>
        /// <param name="max">The maximum random number.</param>
        /// <returns>The random training set.</returns>
        public static BasicMLDataSet Generate(long seed,
            int count, int inputCount,
            int idealCount, double min, double max)
        {
            var rand =
                new LinearCongruentialGenerator(seed);

            var result = new BasicMLDataSet();
            for (int i = 0; i < count; i++)
            {
                var inputData = new BasicMLData(inputCount);

                for (int j = 0; j < inputCount; j++)
                {
                    inputData[j] = rand.Range(min, max);
                }

                var idealData = new BasicMLData(idealCount);

                for (int j = 0; j < idealCount; j++)
                {
                    idealData[j] = rand.Range(min, max);
                }

                var pair = new BasicMLDataPair(inputData,
                                               idealData);
                result.Add(pair);
            }
            return result;
        }
Пример #2
0
 public static BasicMLDataSet Generate(long seed, int count, int inputCount, int idealCount, double min, double max)
 {
     IMLData data;
     int num2;
     IMLData data2;
     BasicMLDataPair pair;
     LinearCongruentialGenerator generator = new LinearCongruentialGenerator(seed);
     BasicMLDataSet set = new BasicMLDataSet();
     int num = 0;
     goto Label_0018;
     Label_000C:
     set.Add(pair);
     Label_0014:
     num++;
     Label_0018:
     if (num < count)
     {
         data = new BasicMLData(inputCount);
         num2 = 0;
         while (num2 < inputCount)
         {
             data.Data[num2] = generator.Range(min, max);
             num2++;
         }
         data2 = new BasicMLData(idealCount);
         if (((uint) count) < 0)
         {
             goto Label_000C;
         }
         if ((((uint) idealCount) & 0) != 0)
         {
             goto Label_0014;
         }
         int num3 = 0;
     Label_002D:
         if (num3 < idealCount)
         {
             data2[num3] = generator.Range(min, max);
             if ((((uint) idealCount) - ((uint) max)) <= uint.MaxValue)
             {
                 num3++;
                 goto Label_002D;
             }
         }
         else
         {
             goto Label_0032;
         }
         goto Label_00C6;
     }
     if (0 == 0)
     {
         return set;
     }
     Label_0032:
     pair = new BasicMLDataPair(data, data2);
     Label_00C6:
     if ((((uint) num2) & 0) == 0)
     {
         goto Label_000C;
     }
     goto Label_0018;
 }
        /// <summary>
        /// Generate random training into a training set.
        /// </summary>
        /// <param name="training">The training set to generate into.</param>
        /// <param name="seed">The seed to use.</param>
        /// <param name="count">How much data to generate.</param>
        /// <param name="min">The low random value.</param>
        /// <param name="max">The high random value.</param>
        public static void Generate(IMLDataSetAddable training,
            long seed,
            int count,
            double min, double max)
        {
            var rand
                = new LinearCongruentialGenerator(seed);

            int inputCount = training.InputSize;
            int idealCount = training.IdealSize;

            for (int i = 0; i < count; i++)
            {
                var inputData = new BasicMLData(inputCount);

                for (int j = 0; j < inputCount; j++)
                {
                    inputData[j] = rand.Range(min, max);
                }

                var idealData = new BasicMLData(idealCount);

                for (int j = 0; j < idealCount; j++)
                {
                    idealData[j] = rand.Range(min, max);
                }

                var pair = new BasicMLDataPair(inputData,
                                               idealData);
                training.Add(pair);
            }
        }
Пример #4
0
 public static void Generate(IMLDataSet training, long seed, int count, double min, double max)
 {
     int num;
     int idealSize;
     int num3;
     IMLData data;
     int num4;
     IMLData data2;
     int num5;
     LinearCongruentialGenerator generator = new LinearCongruentialGenerator(seed);
     goto Label_0111;
     Label_0023:
     if (num3 < count)
     {
         data = new BasicMLData(num);
         num4 = 0;
         while (true)
         {
             if (num4 < num)
             {
                 data[num4] = generator.Range(min, max);
             }
             else
             {
                 data2 = new BasicMLData(idealSize);
                 num5 = 0;
                 goto Label_004D;
             }
             num4++;
         }
     }
     if ((((uint) num) - ((uint) num)) >= 0)
     {
         if ((((uint) num4) - ((uint) num3)) >= 0)
         {
             if ((((uint) seed) + ((uint) seed)) >= 0)
             {
                 return;
             }
             goto Label_0111;
         }
         goto Label_00F5;
     }
     Label_0047:
     num5++;
     Label_004D:
     if (num5 >= idealSize)
     {
         if ((((uint) max) + ((uint) num3)) <= uint.MaxValue)
         {
             BasicMLDataPair inputData = new BasicMLDataPair(data, data2);
             training.Add(inputData);
             num3++;
         }
     }
     else
     {
         data2[num5] = generator.Range(min, max);
         if (((uint) num5) >= 0)
         {
             goto Label_0047;
         }
     }
     goto Label_0023;
     Label_00F5:
     num3 = 0;
     goto Label_0023;
     Label_0111:
     num = training.InputSize;
     idealSize = training.IdealSize;
     goto Label_00F5;
 }