Пример #1
0
        /// <summary>
        /// Converts a dataset to a set of training examples in 2D for use in CNTK.
        /// </summary>
        /// <typeparam name="T">Supported by<seealso cref="float"/>, <seealso cref="double"/></typeparam>
        /// <param name="features">2D Feature Set</param>
        /// <param name="labels">Set of labels. The dimension of the labels should be the same.</param>
        /// <param name="minibatchSize">Minipack size</param>
        /// <returns></returns>
        public IEnumerable <Minibatch> ConvertDatasetToMinibatch <T>(IEnumerable <T[, ]> features, IEnumerable <T[]> labels, int minibatchSize) where T : IConvertible
        {
            var combined = features.Zip(labels, (f, l) => (f, l));

            foreach (var segment in GetSegments(combined, minibatchSize))
            {
                var featuresData = segment.SelectMany(p => MatrixToVector(p.f));
                var labelsData   = segment.SelectMany(p => p.l);

                Minibatch minibatch = new Minibatch();
                minibatch.Size     = segment.Count;
                minibatch.Features = Value.CreateBatch(new int[] { GetRowsCount(segment[0].f), GetColumnsCount(segment[0].f), 1 }, featuresData, Device);
                minibatch.Labels   = Value.CreateBatch(new int[] { segment[0].l.Length }, labelsData, Device);

                yield return(minibatch);
            }
        }
Пример #2
0
        /// <summary>
        /// Converts a dataset into sets of training examples for use in CNTK.
        /// </summary>
        /// <typeparam name="T">Supported by<seealso cref="float"/>, <seealso cref="double"/></typeparam>
        /// <param name="dataset">Dataset. Each example should contain signs at the beginning of the array with dimensions of inputDim, and at the end of class labels with dimensions of outputDim.
        /// For example, inputDim = 3, outputDim = 2: [f1, f2, f3, l1, l2]</param>
        /// <param name="minibatchSize">Minipack size</param>
        /// <param name="inputDim">Dimension of signs (capacity)</param>
        /// <returns></returns>
        public IEnumerable <Minibatch> ConvertDatasetToMinibatch <T>(IEnumerable <T[]> dataset, int inputDim, int minibatchSize) where T : IConvertible
        {
            var outputDim = (dataset.FirstOrDefault()?.Length ?? 0) - inputDim;

            foreach (var minibatchData in GetSegments(dataset, minibatchSize))
            {
                var features = minibatchData.SelectMany(p => p.Take(inputDim)).ToArray();
                var labels   = minibatchData.SelectMany(p => p.Skip(inputDim)).ToArray();

                Minibatch minibatch = new Minibatch();
                minibatch.Size     = minibatchData.Count;
                minibatch.Features = Value.CreateBatch(new int[] { inputDim }, features, Device);
                minibatch.Labels   = Value.CreateBatch(new int[] { outputDim }, labels, Device);

                yield return(minibatch);
            }
        }
Пример #3
0
        /// <summary>
        /// Converts a dataset into sets of training examples for use in recursive networks.
        /// </summary>
        /// <typeparam name="T">Supported by<seealso cref="float"/>, <seealso cref="double"/></typeparam>
        /// <param name="features">A set of sequences (traits). Each sequence can be of variable length, but of the same dimension (the arrays of which the sequence consists must have the same length)</param>
        /// <param name="labels">Set of labels. The dimension of the labels should be the same.</param>
        /// <param name="minibatchSize">Minipack size</param>
        /// <returns></returns>
        public IEnumerable <Minibatch> ConvertDatasetToMinibatch <T>(IEnumerable <IList <T[]> > features, IEnumerable <T[]> labels, int minibatchSize) where T : IConvertible
        {
            var inputDimension  = features.FirstOrDefault()?[0].Length ?? 0;
            var outputDimension = labels.FirstOrDefault()?.Length ?? 0;
            var combined        = features.Zip(labels, (f, l) => (f, l));

            foreach (var batchData in GetSegments(combined, minibatchSize))
            {
                //{}-miniBatch, ()-sequence, []-features.
                //{ ([inputDim], [inputDim], [inputDim]), ([inputDim], [inputDim]) } => { [inputDim * 3], [inputDim * 2] }
                var featuresTransformed = batchData.Select(p => p.f.SelectMany(q => q));
                //{ [outputDim], [outputDim] } => { outputDim * 2 }
                var labelTransformed = batchData.SelectMany(p => p.l);

                Minibatch minibatch = new Minibatch();
                minibatch.Features = Value.CreateBatchOfSequences(new[] { inputDimension }, featuresTransformed, Device);
                minibatch.Labels   = Value.CreateBatch(new[] { outputDimension }, labelTransformed, Device);
                minibatch.Size     = batchData.Count;
                yield return(minibatch);
            }
        }