Пример #1
0
        /// <summary>
        /// Inserts a
        /// </summary>
        /// <param name="key"></param>
        /// <param name="value"></param>
        /// <param name="t"></param>
        /// <param name="lev"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        /// <remarks> Method ins translated from 352.ins.c of Gonnet and Baeza-Yates</remarks>
        public static KdNode Insert(HPoint key, object value, KdNode t, int lev, int k)
        {
            if (t == null)
            {
                t = new KdNode(key, value);
            }
            else if (key.Equals(t.K))
            {
                // "re-insert"
                if (t.IsDeleted)
                {
                    t.IsDeleted = false;
                    t.V         = value;
                }
                else
                {
                    throw (new KeyDuplicateException());
                }
            }
            else if (key[lev] > t.K[lev])
            {
                t.Right = Insert(key, value, t.Right, (lev + 1) % k, k);
            }
            else
            {
                t.Left = Insert(key, value, t.Left, (lev + 1) % k, k);
            }

            return(t);
        }
Пример #2
0
        /// <summary>
        /// Find KD-tree nodes whose keys are <I>n</I> nearest neighbors to
        /// key. Uses algorithm above.  Neighbors are returned in ascending
        /// order of distance to key.
        /// </summary>
        /// <param name="key">key for KD-tree node</param>
        /// <param name="numNeighbors">The Integer showing how many neighbors to find</param>
        /// <returns>An array of objects at the node nearest to the key</returns>
        /// <exception cref="KeySizeException">Mismatch if key length doesn't match the dimension for the tree</exception>
        /// <exception cref="NeighborsOutOfRangeException">if <I>n</I> is negative or exceeds tree size </exception>
        public object[] Nearest(double[] key, int numNeighbors)
        {
            if (numNeighbors < 0 || numNeighbors > _count)
            {
                throw new NeighborsOutOfRangeException();
            }

            if (key.Length != _k)
            {
                throw new KeySizeException();
            }

            object[]            neighbors = new object[numNeighbors];
            NearestNeighborList nnl       = new NearestNeighborList(numNeighbors);

            // initial call is with infinite hyper-rectangle and max distance
            HRect        hr         = HRect.InfiniteHRect(key.Length);
            const double maxDistSqd = 1.79769e+30;
            HPoint       keyp       = new HPoint(key);

            KdNode.Nnbr(_root, keyp, hr, maxDistSqd, 0, _k, nnl);

            for (int i = 0; i < numNeighbors; ++i)
            {
                KdNode kd = (KdNode)nnl.RemoveHighest();
                neighbors[numNeighbors - i - 1] = kd.V;
            }

            return(neighbors);
        }
Пример #3
0
        /// <summary>
        /// Searches for values in a range
        /// </summary>
        /// <param name="lowk"></param>
        /// <param name="uppk"></param>
        /// <param name="t"></param>
        /// <param name="lev"></param>
        /// <param name="k"></param>
        /// <param name="v"></param>
        /// <remarks>Method rsearch translated from 352.range.c of Gonnet and Baeza-Yates</remarks>
        public static void SearchRange(HPoint lowk, HPoint uppk, KdNode t, int lev,
                                       int k, List <KdNode> v)
        {
            if (t == null)
            {
                return;
            }
            if (lowk[lev] <= t.K[lev])
            {
                SearchRange(lowk, uppk, t.Left, (lev + 1) % k, k, v);
            }
            int j;

            for (j = 0; j < k && lowk[j] <= t.K[j] &&
                 uppk[j] >= t.K[j]; j++)
            {
            }
            if (j == k)
            {
                v.Add(t);
            }
            if (uppk[lev] > t.K[lev])
            {
                SearchRange(lowk, uppk, t.Right, (lev + 1) % k, k, v);
            }
        }
Пример #4
0
        /// <summary>
        /// Find KD-tree nodes whose keys are <I>n</I> farthest neighbors from
        /// key.  Neighbors are returned in descending order of distance to key.
        /// </summary>
        /// <param name="key">key for KD-tree node</param>
        /// <param name="numNeighbors">The Integer showing how many neighbors to find</param>
        /// <returns>An array of objects at the node nearest to the key</returns>
        /// <exception cref="KeySizeException">Mismatch if key length doesn't match the dimension for the tree</exception>
        /// <exception cref="NeighborsOutOfRangeException">if <I>n</I> is negative or exceeds tree size </exception>
        public object[] Farthest(double[] key, int numNeighbors)
        {
            if (numNeighbors < 0 || numNeighbors > _count)
            {
                throw new NeighborsOutOfRangeException();
            }

            if (key.Length != _k)
            {
                throw new KeySizeException();
            }

            object[]             neighbors = new object[numNeighbors];
            FarthestNeighborList fnl       = new FarthestNeighborList(numNeighbors);

            // initial call is with infinite hyper-rectangle and max distance
            HRect hr = HRect.InfiniteHRect(key.Length);
            //double max_dist_sqd = 1.79769e+30; //Double.MaxValue;
            HPoint keyp = new HPoint(key);

            KdNode.FarthestNeighbor(_root, keyp, hr, 0, 0, _k, fnl);
            //KDNode.nnbr(_root, keyp, hr, max_dist_sqd, 0, _k, nnl);

            for (int i = 0; i < numNeighbors; ++i)
            {
                KdNode kd = (KdNode)fnl.RemoveFarthest();
                neighbors[numNeighbors - i - 1] = kd.V;
            }

            return(neighbors);
        }
Пример #5
0
 /// <summary>
 /// Constructs a new instance of the KDNode.
 /// </summary>
 /// <param name="key">A Hyper Point representing the key to use for storing this value</param>
 /// <param name="value">A valid object value to use for copying this.</param>
 /// <remarks>The constructor is used only by class; other methods are static</remarks>
 private KdNode(HPoint key, object value)
 {
     K = key;
     V = value;
     Left = null;
     Right = null;
     _isDeleted = false;
 }
Пример #6
0
 /// <summary>
 /// Constructs a new instance of the KDNode.
 /// </summary>
 /// <param name="key">A Hyper Point representing the key to use for storing this value</param>
 /// <param name="value">A valid object value to use for copying this.</param>
 /// <remarks>The constructor is used only by class; other methods are static</remarks>
 private KdNode(HPoint key, object value)
 {
     K          = key;
     V          = value;
     Left       = null;
     Right      = null;
     _isDeleted = false;
 }
Пример #7
0
 /// <summary>
 /// Creates a new tree with the specified number of dimensions.
 /// </summary>
 /// <param name="k">An integer value specifying how many ordinates each key should have.</param>
 public KdTree(int k)
 {
     if (k < 0)
     {
         throw new NegativeArgumentException("k");
     }
     _k    = k;
     _root = null;
 }
Пример #8
0
        /// <summary>
        /// Insert a node into the KD-tree.
        /// </summary>
        /// <param name="key">The array of double valued keys marking the position to insert this object into the tree</param>
        /// <param name="value">The object value to insert into the tree</param>
        /// <exception cref="KeySizeException"> if key.length mismatches the dimension of the tree (K)</exception>
        /// <exception cref="KeyDuplicateException"> if the key already exists in the tree</exception>
        /// <remarks>
        /// Uses algorithm translated from 352.ins.c of
        ///   &#064;Book{GonnetBaezaYates1991,
        ///   author =    {G.H. Gonnet and R. Baeza-Yates},
        ///   title =     {Handbook of Algorithms and Data Structures},
        ///   publisher = {Addison-Wesley},
        ///   year =      {1991}
        /// </remarks>
        public void Insert(double[] key, object value)
        {
            if (key.Length != _k)
            {
                throw new KeySizeException();
            }

            _root = KdNode.Insert(new HPoint(key), value, _root, 0, _k);

            _count++;
        }
Пример #9
0
        /// <summary>
        /// Find the KD-tree node whose key is identical to the specified key.
        /// This uses the algorithm translated from 352.srch.c of Connet and Baeza-Yates.
        /// </summary>
        /// <param name="key">The key identifying the node to search for</param>
        /// <returns>An object that is the node with a matching key, or null if no key was found.</returns>
        /// <exception cref="KeySizeException"> if key.length mismatches the dimension of the tree (K)</exception>
        public object Search(double[] key)
        {
            if (key.Length != _k)
            {
                throw new KeySizeException();
            }

            KdNode kd = KdNode.Search(new HPoint(key), _root, _k);

            return(kd == null ? null : kd.V);
        }
Пример #10
0
        /// <summary>
        /// Searches for a specific value
        /// </summary>
        /// <param name="key"></param>
        /// <param name="t"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        /// <remarks>Method srch translated from 352.srch.c of Gonnet and Baeza-Yates</remarks>
        public static KdNode Search(HPoint key, KdNode t, int k)
        {
            for (int lev = 0; t != null; lev = (lev + 1) % k)
            {
                if (!t.IsDeleted && key.Equals(t.K))
                {
                    return(t);
                }
                t = key[lev] > t.K[lev] ? t.Right : t.Left;
            }

            return(null);
        }
Пример #11
0
        /// <summary>
        /// Deletes a node from the KD-tree.  Instead of actually deleting the node and
        /// rebuilding the tree, it marks the node as deleted.  Hence, it is up to the
        /// caller to rebuild the tree as needed for efficiency.
        /// </summary>
        /// <param name="key">The key to use to identify the node to delete</param>
        /// <exception cref="KeySizeException"> if key.length mismatches the dimension of the tree (K)</exception>
        /// <exception cref="KeyMissingException"> if the key was not found in the tree</exception>
        public void Delete(double[] key)
        {
            if (key.Length != _k)
            {
                throw new KeySizeException();
            }

            KdNode t = KdNode.Search(new HPoint(key), _root, _k);

            if (t == null)
            {
                throw new KeyMissingException();
            }

            t.IsDeleted = true;

            _count--;
        }
Пример #12
0
        /// <summary>
        /// Search a range in the KD-tree.
        /// </summary>
        /// <param name="lowKey">The lower bound in all ordinates for keys</param>
        /// <param name="highKey">Teh upper bound in all ordinates for keys</param>
        /// <returns>An array of objects whose keys fall in range [lowk, uppk]</returns>
        /// <remarks> Range search in a KD-tree.  Uses algorithm translated from 352.range.c of Gonnet and Baeza-Yates.</remarks>
        /// <exception cref="KeySizeException">Mismatch of the specified parameters compared with the tree or each other.</exception>
        public object[] SearchRange(double[] lowKey, double[] highKey)
        {
            if (lowKey.Length != highKey.Length)
            {
                throw new KeySizeException();
            }

            if (lowKey.Length != _k)
            {
                throw new KeySizeException();
            }

            List <KdNode> v = new List <KdNode>();

            KdNode.SearchRange(new HPoint(lowKey), new HPoint(highKey), _root, 0, _k, v);
            object[] o = new object[v.Count];
            for (int i = 0; i < v.Count; ++i)
            {
                KdNode n = v[i];
                o[i] = n.V;
            }
            return(o);
        }
Пример #13
0
        /// <summary>
        /// Inserts a
        /// </summary>
        /// <param name="key"></param>
        /// <param name="value"></param>
        /// <param name="t"></param>
        /// <param name="lev"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        /// <remarks> Method ins translated from 352.ins.c of Gonnet and Baeza-Yates</remarks>
        public static KdNode Insert(HPoint key, object value, KdNode t, int lev, int k)
        {
            if (t == null)
            {
                t = new KdNode(key, value);
            }
            else if (key.Equals(t.K))
            {
                // "re-insert"
                if (t.IsDeleted)
                {
                    t.IsDeleted = false;
                    t.V = value;
                }
                else
                {
                    throw (new KeyDuplicateException());
                }
            }
            else if (key[lev] > t.K[lev])
            {
                t.Right = Insert(key, value, t.Right, (lev + 1) % k, k);
            }
            else
            {
                t.Left = Insert(key, value, t.Left, (lev + 1) % k, k);
            }

            return t;
        }
Пример #14
0
        /// <summary>
        /// This method was written by Ted Dunsford by restructuring the nearest neighbor
        /// algorithm presented by Andrew and Bjoern
        /// </summary>
        /// <param name="kd">Since this is recursive, this represents the current node</param>
        /// <param name="target">The target is the HPoint that we are trying to calculate the farthest distance from</param>
        /// <param name="hr">In this case, the hr is the hyper rectangle bounding the region that must contain the furthest point.</param>
        /// <param name="maxDistSqd">The maximum distance that we have calculated thus far, and will therefore be testing against.</param>
        /// <param name="lev">The integer based level of that we have recursed to in the tree</param>
        /// <param name="k">The dimensionality of the kd tree</param>
        /// <param name="fnl">A list to contain the output, prioritized by distance</param>
        public static void FarthestNeighbor(KdNode kd, HPoint target, HRect hr,
                                            double maxDistSqd, int lev, int k,
                                            FarthestNeighborList fnl)
        {
            // 1. if kd is empty then set dist-sqd to infinity and exit.
            if (kd == null)
            {
                return;
            }

            // 2. s := split field of kd
            int s = lev % k;

            // 3. pivot := dom-elt field of kd
            HPoint pivot         = kd.K;
            double pivotToTarget = HPoint.SquareDistance(pivot, target);

            // 4. Cut hr into to sub-hyperrectangles left-hr and right-hr.
            //    The cut plane is through pivot and perpendicular to the s
            //    dimension.
            HRect leftHr  = hr; // optimize by not cloning
            HRect rightHr = hr.Copy();

            leftHr.Max[s]  = pivot[s];
            rightHr.Min[s] = pivot[s];

            // 5. target-in-left := target_s <= pivot_s
            bool targetInLeft = target[s] < pivot[s];

            KdNode nearerKd;
            HRect  nearerHr;
            KdNode furtherKd;
            HRect  furtherHr;

            if (targetInLeft)
            {
                // 6. if target-in-left then
                //    6.1. nearer-kd := left field of kd and nearer-hr := left-hr
                //    6.2. further-kd := right field of kd and further-hr := right-hr
                nearerKd  = kd.Left;
                nearerHr  = leftHr;
                furtherKd = kd.Right;
                furtherHr = rightHr;
            }
            else
            {
                //
                // 7. if not target-in-left then
                //    7.1. nearer-kd := right field of kd and nearer-hr := right-hr
                //    7.2. further-kd := left field of kd and further-hr := left-hr
                nearerKd  = kd.Right;
                nearerHr  = rightHr;
                furtherKd = kd.Left;
                furtherHr = leftHr;
            }

            // 8. Recursively call Nearest Neighbor with paramters
            //    (nearer-kd, target, nearer-hr, max-dist-sqd), storing the
            //    results in nearest and dist-sqd
            //FarthestNeighbor(nearer_kd, target, nearer_hr, max_dist_sqd, lev + 1, K, nnl);

            // This line changed by Ted Dunsford to attempt to find the farther point
            FarthestNeighbor(furtherKd, target, furtherHr, maxDistSqd, lev + 1, k, fnl);

            //KDNode nearest = (KDNode)nnl.Highest;
            double distSqd;

            if (!fnl.IsCapacityReached)
            {
                //dist_sqd = 1.79769e+30; // Double.MaxValue;
                distSqd = 0;
            }
            else
            {
                distSqd = fnl.MinimumPriority;
            }

            // 9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
            //max_dist_sqd = Math.Min(max_dist_sqd, dist_sqd);

            maxDistSqd = Math.Max(maxDistSqd, distSqd);

            // 10. A nearer point could only lie in further-kd if there were some
            //     part of further-hr within distance sqrt(max-dist-sqd) of
            //     target.  If this is the case then
            // HPoint closest = further_hr.Closest(target);
            HPoint furthest = nearerHr.Farthest(target);

            //if (HPoint.EuclideanDistance(closest, target) < Math.Sqrt(max_dist_sqd))
            if (HPoint.EuclideanDistance(furthest, target) > Math.Sqrt(maxDistSqd))
            {
                // 10.1 if (pivot-target)^2 < dist-sqd then
                if (pivotToTarget > distSqd)
                {
                    // 10.1.1 nearest := (pivot, range-elt field of kd)
                    //nearest = kd;

                    // 10.1.2 dist-sqd = (pivot-target)^2
                    distSqd = pivotToTarget;

                    // add to nnl
                    if (!kd.IsDeleted)
                    {
                        fnl.Insert(kd, distSqd);
                    }

                    // 10.1.3 max-dist-sqd = dist-sqd
                    // max_dist_sqd = dist_sqd;
                    if (fnl.IsCapacityReached)
                    {
                        maxDistSqd = fnl.MinimumPriority;
                    }
                    else
                    {
                        // max_dist_sqd = 1.79769e+30; //Double.MaxValue;
                        maxDistSqd = 0;
                    }
                }

                // 10.2 Recursively call Nearest Neighbor with parameters
                //      (further-kd, target, further-hr, max-dist_sqd),
                //      storing results in temp-nearest and temp-dist-sqd
                FarthestNeighbor(nearerKd, target, nearerHr, maxDistSqd, lev + 1, k, fnl);

                double tempDistSqd = fnl.MinimumPriority;

                // 10.3 If tmp-dist-sqd < dist-sqd then
                if (tempDistSqd > distSqd)
                {
                    // 10.3.1 nearest := temp_nearest and dist_sqd := temp_dist_sqd
                    distSqd = tempDistSqd;
                }
            }
            else if (pivotToTarget < maxDistSqd)
            {
                // SDL: otherwise, current point is nearest
                distSqd = pivotToTarget;
            }
        }
Пример #15
0
 /// <summary>
 /// Searches for values in a range
 /// </summary>
 /// <param name="lowk"></param>
 /// <param name="uppk"></param>
 /// <param name="t"></param>
 /// <param name="lev"></param>
 /// <param name="k"></param>
 /// <param name="v"></param>
 /// <remarks>Method rsearch translated from 352.range.c of Gonnet and Baeza-Yates</remarks>
 public static void SearchRange(HPoint lowk, HPoint uppk, KdNode t, int lev,
                                int k, List<KdNode> v)
 {
     if (t == null) return;
     if (lowk[lev] <= t.K[lev])
     {
         SearchRange(lowk, uppk, t.Left, (lev + 1) % k, k, v);
     }
     int j;
     for (j = 0; j < k && lowk[j] <= t.K[j] &&
                 uppk[j] >= t.K[j]; j++)
     {
     }
     if (j == k) v.Add(t);
     if (uppk[lev] > t.K[lev])
     {
         SearchRange(lowk, uppk, t.Right, (lev + 1) % k, k, v);
     }
 }
Пример #16
0
        /// <summary>
        /// This method was written by Ted Dunsford by restructuring the nearest neighbor
        /// algorithm presented by Andrew and Bjoern
        /// </summary>
        /// <param name="kd">Since this is recursive, this represents the current node</param>
        /// <param name="target">The target is the HPoint that we are trying to calculate the farthest distance from</param>
        /// <param name="hr">In this case, the hr is the hyper rectangle bounding the region that must contain the furthest point.</param>
        /// <param name="maxDistSqd">The maximum distance that we have calculated thus far, and will therefore be testing against.</param>
        /// <param name="lev">The integer based level of that we have recursed to in the tree</param>
        /// <param name="k">The dimensionality of the kd tree</param>
        /// <param name="fnl">A list to contain the output, prioritized by distance</param>
        public static void FarthestNeighbor(KdNode kd, HPoint target, HRect hr,
                                            double maxDistSqd, int lev, int k,
                                            FarthestNeighborList fnl)
        {
            // 1. if kd is empty then set dist-sqd to infinity and exit.
            if (kd == null)
            {
                return;
            }

            // 2. s := split field of kd
            int s = lev % k;

            // 3. pivot := dom-elt field of kd
            HPoint pivot = kd.K;
            double pivotToTarget = HPoint.SquareDistance(pivot, target);

            // 4. Cut hr into to sub-hyperrectangles left-hr and right-hr.
            //    The cut plane is through pivot and perpendicular to the s
            //    dimension.
            HRect leftHr = hr; // optimize by not cloning
            HRect rightHr = hr.Copy();
            leftHr.Max[s] = pivot[s];
            rightHr.Min[s] = pivot[s];

            // 5. target-in-left := target_s <= pivot_s
            bool targetInLeft = target[s] < pivot[s];

            KdNode nearerKd;
            HRect nearerHr;
            KdNode furtherKd;
            HRect furtherHr;

            if (targetInLeft)
            {
                // 6. if target-in-left then
                //    6.1. nearer-kd := left field of kd and nearer-hr := left-hr
                //    6.2. further-kd := right field of kd and further-hr := right-hr
                nearerKd = kd.Left;
                nearerHr = leftHr;
                furtherKd = kd.Right;
                furtherHr = rightHr;
            }
            else
            {
                //
                // 7. if not target-in-left then
                //    7.1. nearer-kd := right field of kd and nearer-hr := right-hr
                //    7.2. further-kd := left field of kd and further-hr := left-hr
                nearerKd = kd.Right;
                nearerHr = rightHr;
                furtherKd = kd.Left;
                furtherHr = leftHr;
            }

            // 8. Recursively call Nearest Neighbor with paramters
            //    (nearer-kd, target, nearer-hr, max-dist-sqd), storing the
            //    results in nearest and dist-sqd
            //FarthestNeighbor(nearer_kd, target, nearer_hr, max_dist_sqd, lev + 1, K, nnl);

            // This line changed by Ted Dunsford to attempt to find the farther point
            FarthestNeighbor(furtherKd, target, furtherHr, maxDistSqd, lev + 1, k, fnl);

            //KDNode nearest = (KDNode)nnl.Highest;
            double distSqd;

            if (!fnl.IsCapacityReached)
            {
                //dist_sqd = 1.79769e+30; // Double.MaxValue;
                distSqd = 0;
            }
            else
            {
                distSqd = fnl.MinimumPriority;
            }

            // 9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
            //max_dist_sqd = Math.Min(max_dist_sqd, dist_sqd);

            maxDistSqd = Math.Max(maxDistSqd, distSqd);

            // 10. A nearer point could only lie in further-kd if there were some
            //     part of further-hr within distance sqrt(max-dist-sqd) of
            //     target.  If this is the case then
            // HPoint closest = further_hr.Closest(target);
            HPoint furthest = nearerHr.Farthest(target);
            //if (HPoint.EuclideanDistance(closest, target) < Math.Sqrt(max_dist_sqd))
            if (HPoint.EuclideanDistance(furthest, target) > Math.Sqrt(maxDistSqd))
            {
                // 10.1 if (pivot-target)^2 < dist-sqd then
                if (pivotToTarget > distSqd)
                {
                    // 10.1.1 nearest := (pivot, range-elt field of kd)
                    //nearest = kd;

                    // 10.1.2 dist-sqd = (pivot-target)^2
                    distSqd = pivotToTarget;

                    // add to nnl
                    if (!kd.IsDeleted)
                    {
                        fnl.Insert(kd, distSqd);
                    }

                    // 10.1.3 max-dist-sqd = dist-sqd
                    // max_dist_sqd = dist_sqd;
                    if (fnl.IsCapacityReached)
                    {
                        maxDistSqd = fnl.MinimumPriority;
                    }
                    else
                    {
                        // max_dist_sqd = 1.79769e+30; //Double.MaxValue;
                        maxDistSqd = 0;
                    }
                }

                // 10.2 Recursively call Nearest Neighbor with parameters
                //      (further-kd, target, further-hr, max-dist_sqd),
                //      storing results in temp-nearest and temp-dist-sqd
                FarthestNeighbor(nearerKd, target, nearerHr, maxDistSqd, lev + 1, k, fnl);

                double tempDistSqd = fnl.MinimumPriority;

                // 10.3 If tmp-dist-sqd < dist-sqd then
                if (tempDistSqd > distSqd)
                {
                    // 10.3.1 nearest := temp_nearest and dist_sqd := temp_dist_sqd
                    distSqd = tempDistSqd;
                }
            }
            else if (pivotToTarget < maxDistSqd)
            {
                // SDL: otherwise, current point is nearest
                distSqd = pivotToTarget;
            }
        }
Пример #17
0
        /// <summary>
        /// Insert a node into the KD-tree.
        /// </summary>
        /// <param name="key">The array of double valued keys marking the position to insert this object into the tree</param>
        /// <param name="value">The object value to insert into the tree</param>
        /// <exception cref="KeySizeException"> if key.length mismatches the dimension of the tree (K)</exception>
        /// <exception cref="KeyDuplicateException"> if the key already exists in the tree</exception>
        /// <remarks>
        /// Uses algorithm translated from 352.ins.c of
        ///   &#064;Book{GonnetBaezaYates1991,
        ///   author =    {G.H. Gonnet and R. Baeza-Yates},
        ///   title =     {Handbook of Algorithms and Data Structures},
        ///   publisher = {Addison-Wesley},
        ///   year =      {1991}
        /// </remarks>
        public void Insert(double[] key, object value)
        {
            if (key.Length != _k) throw new KeySizeException();

            _root = KdNode.Insert(new HPoint(key), value, _root, 0, _k);

            _count++;
        }
Пример #18
0
 /// <summary>
 /// Creates a new tree with the specified number of dimensions.
 /// </summary>
 /// <param name="k">An integer value specifying how many ordinates each key should have.</param>
 public KdTree(int k)
 {
     if (k < 0) throw new NegativeArgumentException("k");
     _k = k;
     _root = null;
 }
Пример #19
0
        /// <summary>
        /// Searches for a specific value
        /// </summary>
        /// <param name="key"></param>
        /// <param name="t"></param>
        /// <param name="k"></param>
        /// <returns></returns>
        /// <remarks>Method srch translated from 352.srch.c of Gonnet and Baeza-Yates</remarks>
        public static KdNode Search(HPoint key, KdNode t, int k)
        {
            for (int lev = 0; t != null; lev = (lev + 1) % k)
            {
                if (!t.IsDeleted && key.Equals(t.K))
                {
                    return t;
                }
                t = key[lev] > t.K[lev] ? t.Right : t.Left;
            }

            return null;
        }