public double Calculate(int variable, Varset parents, Dictionary<ulong, int> paCounts)
        {
            parents.Set(variable, true);
            double score = 0;

            ContingencyTableNode ct = adTree.MakeContab(parents);

            Calculate(ct, 1, 0, paCounts, variable, parents, -1, ref score);

            foreach(KeyValuePair<ulong, int> pair in paCounts)
            {
                score -= ilogi[pair.Value];
            }

            parents.Set(variable, false);

            return score;
        }
Пример #2
0
        public override double CalculateScore(int variable, Varset parents, DoubleMap cache)
        {
            Varset parentsCp = new Varset(parents);
            // TODO check if this violates the constraints
            //if(constraints != NULL && !constraints.SatisfiesConstraints(variable, parents))
            //{
            //}

            // check for prunning
            double tVal = T(variable, parentsCp);

            for (int x = 0; x < network.Size(); x++)
            {
                if (parentsCp.Get(x))
                {
                    parentsCp.Set(x, false);

                    // TODO check the constraints
                    //if (invalidParents.Count > 0 && invalidParents.Contains(parentsCp.ToULong()))
                    //{
                    //    parentsCp.Set(x);
                    //    continue;
                    //}

                    double tmp = cache.ContainsKey(parentsCp.ToULong()) ? cache[parentsCp.ToULong()] : 0;
                    if (tmp + tVal > 0)
                    {
                        return 0;
                    }

                    parentsCp.Set(x, true);
                }
            }

            double score = llc.Calculate(variable, parentsCp);

            // structure penalty
            score -= tVal * baseComplexityPenalty;
            //Console.WriteLine("score: " + score);

            return score;
        }
Пример #3
0
        private ADNode MakeADTree(int i, BitArray recordNums, int depth, Varset variables)
        {
            // since this is index i, there are (variableCount - i) remaining variables.
            // therefore, it will have that many children
            int count = 0;
            for(int idx = 0; idx < recordNums.Count; idx++)
            {
                if (recordNums[idx])
                {
                    count += 1;
                }
            }
            ADNode adn = new ADNode(network.Size() - i, count);

            // check if we should just use a leaf list
            if (adn.Count < rMin)
            {
                BitArray leafList = new BitArray(recordNums);
                adn.LeafList = leafList;
                return adn;
            }

            // for each of the remaining variables
            for (int j = i; j < network.Size(); j++)
            {
                // create a vary node
                variables.Set(j, true);
                Varset newVariables = new Varset(variables);
                VaryNode child = MakeVaryNode(j, recordNums, depth, newVariables);
                adn.SetChild(j - i, child);
            }

            return adn;
        }
Пример #4
0
        private ContingencyTableNode MakeContabLeafList(Varset variables, BitArray records)
        {
            Varset variablesCp = new Varset(variables);
            if (variablesCp.Equals(zero))
            {
                int count = 0;
                for (int i = 0; i < records.Count; i++)
                {
                    if (records[i])
                    {
                        count += 1;
                    }
                }
                return new ContingencyTableNode(count, 0, 1);
            }

            int firstIndex = variables.FindFirst();
            int cardinality = network.GetCardinality(firstIndex);
            ContingencyTableNode ct = new ContingencyTableNode(0, cardinality, 0);
            variablesCp.Set(firstIndex, false);
            Varset remainingVariables = new Varset(variablesCp);
            for (int k = 0; k < cardinality; k++)
            {
                BitArray r = new BitArray(recordCount);
                r = r.Or(records);
                r = r.And(consistentRecords[firstIndex][k]);

                int count = 0;
                for (int i = 0; i < r.Count; i++)
                {
                    if (r[i])
                    {
                        count += 1;
                    }
                }
                if (count > 0)
                {
                    ContingencyTableNode child = MakeContabLeafList(remainingVariables, r);
                    ct.SetChild(k, child);
                    ct.LeafCount += child.LeafCount;
                }
            }
            return ct;
        }
Пример #5
0
        public Varset Divide(Varset varset)
        {
            int length = this.item.Count;
            Varset n = new Varset(this);
            Varset d = new Varset(varset);
            //Console.Write("n: ");
            //n.Print();
            //Console.Write("d: ");
            //d.Print();
            Varset m = new Varset(n.item.Length);
            m.Set(0, true);
            Varset q = new Varset(n.item.Count);
            Varset zero = new Varset(n.item.Count);

            if (n.Equals(zero))
            {
                return zero;
            }
            else if (d.Equals(zero))
            {
                throw new ArgumentException("Zero Division.");
            }

            while (d.LessThan(n) || d.Equals(n))
            {
                d = d.LeftShift(1);
                m = m.LeftShift(1);
            }
            Varset one = new Varset(n.item.Length);
            one.Set(0, true);
            while (one.LessThan(m))
            {
                d = d.RightShift(1);
                m = m.RightShift(1);
                if (d.LessThan(n) || d.Equals(n))
                {
                    n = n.Subtract(d);
                    q = q.Or(m);
                }
            }
            q = q.SubVarset(length);
            n = n.SubVarset(length);
            //Console.Write("q: ");
            //q.Print();
            //Console.Write("n: ");
            //n.Print();
            return q;
        }
Пример #6
0
 public static Varset ClearCopy(Varset varset, int index)
 {
     Varset cp = new Varset(varset);
     cp.Set(index, false);
     return cp;
 }
Пример #7
0
 public Varset Subtract(Varset varset)
 {
     Varset cp = new Varset(varset);
     if (cp.item.Length < item.Length)
     {
         AlignLength(cp);
     }
     Varset one = new Varset(1);
     one.Set(0, true);
     cp = cp.Not();
     cp = cp.StaticAdd(one);
     cp = cp.StaticAdd(this);
     return cp;
 }
Пример #8
0
 public Varset NextPermutation()
 {
     Varset vs = new Varset(this);
     Varset one = new Varset(0);
     one.Set(0, true);
     Varset tmp = vs.Or(vs.Subtract(one)).StaticAdd(one);
     Varset nextVariables = tmp.Or(tmp.And(tmp.Not().StaticAdd(one)).Divide(vs.And(vs.Not().StaticAdd(one))).RightShift(1).Subtract(one));
     return nextVariables;
 }
Пример #9
0
        private void CalculateScoresInternal(int variable, DoubleMap cache)
        {
            // calculate initial score
            Varset empty = new Varset(variableCount + 1); // 注意: c++だと0
            double score = scoringFunction.CalculateScore(variable, empty, cache);

            if (score < 1)
            {
                cache[empty.ToULong()] = score;
            }

            int prunedCount = 0;

            for (int layer = 1; layer <= maxParents && !outOfTime; layer++)
            {
                // DEBUG
                Console.WriteLine("layer: " + layer + ", prunedCount: " + prunedCount);

                Varset variables = new Varset(variableCount + 1); // 注意: c++だと0
                for (int i = 0; i < layer; i++)
                {
                    variables.Set(i, true);
                }

                Varset max = new Varset(variableCount);
                max.Set(variableCount, true);

                while (variables.LessThan(max) && !outOfTime)
                {
                    if (!variables.Get(variable))
                    {
                        score = scoringFunction.CalculateScore(variable, variables, cache);

                        if (score < 0)
                        {
                            cache[variables.ToULong()] = score;
                        }
                        else
                        {
                            prunedCount++;
                        }
                    }

                    variables = variables.NextPermutation();
                }

                if (!outOfTime)
                {
                    highestCompletedLayer = layer;
                }
            }
        }
Пример #10
0
        public override double CalculateScore(int variable, Varset parents, DoubleMap cache)
        {
            Scratch s = scratchSpace[variable];

            // TODO check if this violates the constraints
            //if (constraints != NULL && !constraints->satisfiesConstraints(variable, parents))
            //{
            //    s->invalidParents.insert(parents);
            //    return 1;
            //}

            for (int x = 0; x < network.Size(); x++)
            {
                if (parents.Get(x))
                {
                    parents.Set(x, false);

                    // TODO check the constraints
                    //if (invalidParents.Count > 0 && invalidParents.Contains(parents.ToULong()))
                    //{
                    //    // we cannot say anything if we skipped this because of constraints
                    //    parents.Set(x, true);
                    //    continue;
                    //}

                    parents.Set(x, true);
                }
            }

            Lg(parents, ref s);
            Varset variables = new Varset(parents);
            variables.Set(variable, true);

            s.Score = 0;

            ContingencyTableNode ct = adTree.MakeContab(variables);

            Dictionary<ulong, int> paCounts = new Dictionary<ulong, int>();
            Calculate(ct, 1, 0, paCounts, variables, -1, ref s);

            // check constraints (Theorem 9 from de Campos and Ji '11)
            // only bother if the alpha bound is okay
            // check if can prune
            if (s.Aij <= 0.8349)
            {
                double bound = -1.0 * ct.LeafCount * s.Lri;

                // check each subset
                for (int x = 0; x < network.Size(); x++)
                {
                    if (parents.Get(x))
                    {
                        parents.Set(x, false);

                        // check the constraints
                        //if (s->invalidParents.find(parents) != s->invalidParents.end())
                        //{
                        //    // we cannot say anything if we skipped this because of constraints
                        //    VARSET_SET(parents, x);
                        //    continue;
                        //}

                        double tmp = cache.ContainsKey(parents.ToULong()) ? cache[parents.ToULong()] : 0;

                        // if the score is larger (better) than the bound, then we can prune
                        if (tmp > bound)
                        {
                            return 0;
                        }

                        parents.Set(x, true);
                    }
                }
            }

            foreach (KeyValuePair<ulong, int> kvp in paCounts)
            {
                s.Score += s.Lgij;
                s.Score -= ScoreCalculator.GammaLn(s.Aij + kvp.Value);
            }

            //parents.Print();
            //Console.WriteLine(variable);
            return s.Score;
        }