terminalInputVectors() публичный Метод

public terminalInputVectors ( ) : AST.Range[]
Результат AST.Range[]
Пример #1
0
        public static PrepData PrepSimulation(Excel.Application app, Excel.Workbook wbh, ProgBar pb, bool ignore_parse_errors)
        {
            // build graph
            var dag = new DAG(wbh, app, ignore_parse_errors);
            if (dag.containsLoop())
            {
                throw new DataDebugMethods.ContainsLoopException();
            }
            pb.IncrementProgress();

            // get terminal input and terminal formula nodes once
            var terminal_input_nodes = dag.terminalInputVectors();
            var terminal_formula_nodes = dag.terminalFormulaNodes(true);  ///the boolean indicates whether to use all outputs or not

            if (terminal_input_nodes.Length == 0)
            {
                throw new NoRangeInputs();
            }

            if (terminal_formula_nodes.Length == 0)
            {
                throw new NoFormulas();
            }

            // save original spreadsheet state
            CellDict original_inputs = UserSimulation.Utility.SaveInputs(dag);

            // force a recalculation before saving outputs, otherwise we may
            // erroneously conclude that the procedure did the wrong thing
            // based solely on Excel floating-point oddities
            UserSimulation.Utility.InjectValues(app, wbh, original_inputs);

            // save function outputs
            CellDict correct_outputs = UserSimulation.Utility.SaveOutputs(terminal_formula_nodes, dag);

            return new PrepData()
            {
                dag = dag,
                original_inputs = original_inputs,
                correct_outputs = correct_outputs,
                terminal_input_nodes = terminal_input_nodes,
                terminal_formula_nodes = terminal_formula_nodes
            };
        }
Пример #2
0
        public static AST.Address NormalAllOutputs_Step(DAG dag,
            Excel.Application app,
            Excel.Workbook wb,
            HashSet<AST.Address> known_good,
            long max_duration_in_ms,
            Stopwatch sw)
        {
            AST.Address flagged_cell = null;

            //Generate a normal distribution for the entire set of inputs
            var normal_dist = new DataDebugMethods.NormalDistribution(dag.terminalInputVectors(), app);

            // Get top outlier
            if (normal_dist.getErrorsCount() > 0)
            {
                for (int i = 0; i < normal_dist.getErrorsCount(); i++)
                {
                    // check for timeout
                    if (sw.ElapsedMilliseconds > max_duration_in_ms)
                    {
                        throw new TimeoutException("Timeout exception in NormalAllOutputs_Step.");
                    }

                    var flagged_com = normal_dist.getErrorAtPosition(i);
                    flagged_cell = AST.Address.AddressFromCOMObject(flagged_com, wb);
                    if (known_good.Contains(flagged_cell))
                    {
                        flagged_cell = null;
                    }
                    else
                    {
                        break;
                    }
                }
            }

            return flagged_cell;
        }
Пример #3
0
        // num_bootstraps: the number of bootstrap samples to get
        // inputs: a list of inputs; each TreeNode represents an entire input range
        // outputs: a list of outputs; each TreeNode represents a function
        public static TreeScore DataDebug(int num_bootstraps,
            DAG dag,
            Excel.Application app,
            bool weighted,
            bool all_outputs,
            long max_duration_in_ms,
            Stopwatch sw,
            double significance,
            ProgBar pb)
        {
            // this modifies the weights of each node
            PropagateWeights(dag);

            // filter out non-terminal functions
            var output_fns = dag.terminalFormulaNodes(all_outputs);
            // filter out non-terminal inputs
            var input_rngs = dag.terminalInputVectors();

            // first idx: the index of the TreeNode in the "inputs" array
            // second idx: the ith bootstrap
            var resamples = new InputSample[input_rngs.Length][];

            // RNG for sampling
            var rng = new Random();

            // we save initial inputs and outputs here
            var initial_inputs = StoreInputs(input_rngs, dag);
            var initial_outputs = StoreOutputs(output_fns, dag);

            // Set progress bar max
            pb.setMax(input_rngs.Length * 2);

            #region RESAMPLE

            // populate bootstrap array
            // for each input range (a TreeNode)
            for (int i = 0; i < input_rngs.Length; i++)
            {
                // this TreeNode
                var t = input_rngs[i];

                // resample
                resamples[i] = Resample(num_bootstraps, initial_inputs[t], rng);

                // update progress bar
                pb.IncrementProgress();
            }

            #endregion RESAMPLE

            #region INFERENCE
            return Inference(
                num_bootstraps,
                resamples,
                initial_inputs,
                initial_outputs,
                input_rngs,
                output_fns,
                dag,
                weighted,
                significance,
                pb);
            #endregion INFERENCE
        }
Пример #4
0
        // num_bootstraps: the number of bootstrap samples to get
        // inputs: a list of inputs; each TreeNode represents an entire input range
        // outputs: a list of outputs; each TreeNode represents a function
        public static TreeScore DataDebug(int num_bootstraps,
                                          DAG dag,
                                          Excel.Application app,
                                          bool weighted,
                                          bool all_outputs,
                                          long max_duration_in_ms,
                                          Stopwatch sw,
                                          double significance,
                                          ProgBar pb)
        {
            // this modifies the weights of each node
            PropagateWeights(dag);

            // filter out non-terminal functions
            var output_fns = dag.terminalFormulaNodes(all_outputs);
            // filter out non-terminal inputs
            var input_rngs = dag.terminalInputVectors();

            // first idx: the index of the TreeNode in the "inputs" array
            // second idx: the ith bootstrap
            var resamples = new InputSample[input_rngs.Length][];

            // RNG for sampling
            var rng = new Random();

            // we save initial inputs and outputs here
            var initial_inputs  = StoreInputs(input_rngs, dag);
            var initial_outputs = StoreOutputs(output_fns, dag);

            // Set progress bar max
            pb.setMax(input_rngs.Length * 2);

            #region RESAMPLE

            // populate bootstrap array
            // for each input range (a TreeNode)
            for (int i = 0; i < input_rngs.Length; i++)
            {
                // this TreeNode
                var t = input_rngs[i];

                // resample
                resamples[i] = Resample(num_bootstraps, initial_inputs[t], rng);

                // update progress bar
                pb.IncrementProgress();
            }

            #endregion RESAMPLE

            #region INFERENCE
            return(Inference(
                       num_bootstraps,
                       resamples,
                       initial_inputs,
                       initial_outputs,
                       input_rngs,
                       output_fns,
                       dag,
                       weighted,
                       significance,
                       pb));

            #endregion INFERENCE
        }
Пример #5
0
        public void Analyze(long max_duration_in_ms)
        {
            var sw = new System.Diagnostics.Stopwatch();
            sw.Start();

            using (var pb = new ProgBar())
            {
                // Disable screen updating during analysis to speed things up
                _app.ScreenUpdating = false;

                // Build dependency graph (modifies data)
                try
                {
                    _dag = new DAG(_app.ActiveWorkbook, _app, IGNORE_PARSE_ERRORS);
                    var num_input_cells = _dag.numberOfInputCells();
                }
                catch (ExcelParserUtility.ParseException e)
                {
                    // cleanup UI and then rethrow
                    _app.ScreenUpdating = true;
                    throw e;
                }

                if (_dag.terminalInputVectors().Length == 0)
                {
                    System.Windows.Forms.MessageBox.Show("This spreadsheet contains no vector-input functions.");
                    _app.ScreenUpdating = true;
                    _flaggable = new KeyValuePair<AST.Address, int>[0];
                    return;
                }

                // Get bootstraps
                var scores = Analysis.DataDebug(NBOOTS,
                                                _dag,
                                                _app,
                                                weighted: USE_WEIGHTS,
                                                all_outputs: CONSIDER_ALL_OUTPUTS,
                                                max_duration_in_ms: max_duration_in_ms,
                                                sw: sw,
                                                significance: _tool_significance,
                                                pb: pb)
                                     .OrderByDescending(pair => pair.Value).ToArray();

                if (_debug_mode)
                {
                    var score_str = String.Join("\n", scores.Take(10).Select(score => score.Key.A1FullyQualified() + " -> " + score.Value.ToString()));
                    System.Windows.Forms.MessageBox.Show(score_str);
                    System.Windows.Forms.Clipboard.SetText(score_str);
                }

                List<KeyValuePair<AST.Address, int>> high_scores = new List<KeyValuePair<AST.Address, int>>();

                // calculate cutoff idnex
                int thresh = scores.Length - Convert.ToInt32(scores.Length * _tool_significance);

                // filter out cells that are...
                _flaggable = scores.Where(pair => pair.Value >= scores[thresh].Value)   // below threshold
                                   .Where(pair => !_known_good.Contains(pair.Key))      // known to be good
                                   .Where(pair => pair.Value != 0).ToArray();           // score == 0

                // Enable screen updating when we're done
                _app.ScreenUpdating = true;

                sw.Stop();
            }
        }