Пример #1
0
        public void start()
        {
            Commands co = new Commands();

            while (!reader.EndOfStream)
            {
                String line = reader.ReadLine().Trim();
                co.performOneCommand(line);

            }
        }
Пример #2
0
        /// <summary>
        /// Performs the functionality of one command. If no functionality is found for the command, the command is retuned by this method. 
        /// </summary>
        /// <param name="line">One command with its parameters.</param>
        /// <returns>Returns an empty string if the command could be performed by the method. If the command could not be performed by the method, the original command is returned.</returns>
        public string performOneCommand(string line)
        {
            GlobalState.logInfo.logLine(COMMAND + line);

            // remove comment part of the line (the comment starts with an #)
            line = line.Split(new Char[] { '#' }, 2)[0];
            if (line.Length == 0)
                return "";

            // split line in command and parameters of the command
            string[] components = line.Split(new Char[] { ' ' }, 2);
            string command = components[0];
            string task = "";
            if (components.Length > 1)
                task = components[1];

            string[] taskAsParameter = task.Split(new Char[] { ' ' });

            switch (command.ToLower())
            {
                case COMMAND_START_ALLMEASUREMENTS:
                    {
                        InfluenceModel infMod = new InfluenceModel(GlobalState.varModel, GlobalState.currentNFP);

                        List<Configuration> configurations_Learning = new List<Configuration>();

                        foreach (Configuration config in GlobalState.allMeasurements.Configurations)
                        {
                            if (config.nfpValues.ContainsKey(GlobalState.currentNFP))
                                configurations_Learning.Add(config);
                        }

                        if (configurations_Learning.Count == 0)
                        {
                            GlobalState.logInfo.logLine("The learning set is empty! Cannot start learning!");
                            break;
                        }

                        GlobalState.logInfo.logLine("Learning: " + "NumberOfConfigurationsLearning:" + configurations_Learning.Count);
                        // prepare the machine learning
                        exp = new MachineLearning.Learning.Regression.Learning(configurations_Learning, configurations_Learning);
                        exp.metaModel = infMod;
                        exp.mLsettings = this.mlSettings;
                        exp.learn();
                    }
                    break;

                case COMMAND_TRUEMODEL:
                    StreamReader readModel = new StreamReader(task);
                    String model = readModel.ReadLine().Trim();
                    readModel.Close();
                    this.trueModel = new InfluenceFunction(model.Replace(',', '.'), GlobalState.varModel);
                    NFProperty artificalProp = new NFProperty("artificial");
                    GlobalState.currentNFP = artificalProp;
                    //computeEvaluationDataSetBasedOnTrueModel();
                    break;

                case COMMAND_SUBSCRIPT:
                    {

                        FileInfo fi = new FileInfo(task);
                        StreamReader reader = null;
                        if (!fi.Exists)
                            throw new FileNotFoundException(@"Automation script not found. ", fi.ToString());

                        reader = fi.OpenText();
                        Commands co = new Commands();
                        co.exp = this.exp;

                        while (!reader.EndOfStream)
                        {
                            String oneLine = reader.ReadLine().Trim();
                            co.performOneCommand(oneLine);

                        }
                    }
                    break;
                case COMMAND_EVALUATION_SET:
                    {
                        GlobalState.evalutionSet.Configurations = ConfigurationReader.readConfigurations(task, GlobalState.varModel);
                        GlobalState.logInfo.logLine("Evaluation set loaded.");
                    }
                    break;
                case COMMAND_CLEAR_GLOBAL:
                    SPLConqueror_Core.GlobalState.clear();
                    toSample.Clear();
                    toSampleValidation.Clear();
                    break;
                case COMMAND_CLEAR_SAMPLING:
                    exp.clearSampling();
                    toSample.Clear();
                    toSampleValidation.Clear();
                    break;
                case COMMAND_CLEAR_LEARNING:
                    exp.clear();
                    toSample.Clear();
                    toSampleValidation.Clear();
                    break;
                case COMMAND_LOAD_CONFIGURATIONS:
                    GlobalState.allMeasurements.Configurations = (GlobalState.allMeasurements.Configurations.Union(ConfigurationReader.readConfigurations(task, GlobalState.varModel))).ToList();
                    GlobalState.logInfo.logLine(GlobalState.allMeasurements.Configurations.Count + " configurations loaded.");

                    break;
                case COMMAND_SAMPLE_ALLBINARY:
                    {
                        if (taskAsParameter.Contains(COMMAND_VALIDATION))
                        {
                            this.toSampleValidation.Add(SamplingStrategies.ALLBINARY);
                            this.exp.info.binarySamplings_Validation = "ALLBINARY";
                        }
                        else
                        {
                            this.toSample.Add(SamplingStrategies.ALLBINARY);
                            this.exp.info.binarySamplings_Learning = "ALLBINARY";
                        }

                        break;
                    }
                case COMMAND_ANALYZE_LEARNING:
                    {//TODO: Analyzation is not supported in the case of bagging
                        GlobalState.logInfo.logLine("Models:");
                        if (this.mlSettings.bagging)
                        {
                            for (int i = 0; i < this.exp.models.Count; i++)
                            {
                                FeatureSubsetSelection learnedModel = exp.models[i];
                                if (learnedModel == null)
                                {
                                    GlobalState.logError.logLine("Error... learning was not performed!");
                                    break;
                                }
                                GlobalState.logInfo.logLine("Termination reason: " + learnedModel.LearningHistory.Last().terminationReason);
                                foreach (LearningRound lr in learnedModel.LearningHistory)
                                {
                                    double relativeError = 0;
                                    if (GlobalState.evalutionSet.Configurations.Count > 0)
                                    {
                                        double relativeErro2r = learnedModel.computeError(lr.FeatureSet, GlobalState.evalutionSet.Configurations, out relativeError);
                                    }
                                    else
                                    {
                                        double relativeErro2r = learnedModel.computeError(lr.FeatureSet, GlobalState.allMeasurements.Configurations, out relativeError);
                                    }

                                    GlobalState.logInfo.logLine(lr.ToString() + relativeError);
                                }
                            }
                        }
                        else
                        {
                            FeatureSubsetSelection learnedModel = exp.models[0];
                            if (learnedModel == null)
                            {
                                GlobalState.logError.logLine("Error... learning was not performed!");
                                break;
                            }
                            GlobalState.logInfo.logLine("Termination reason: " + learnedModel.LearningHistory.Last().terminationReason);
                            foreach (LearningRound lr in learnedModel.LearningHistory)
                            {
                                double relativeError = 0;
                                if (GlobalState.evalutionSet.Configurations.Count > 0)
                                {
                                    double relativeErro2r = learnedModel.computeError(lr.FeatureSet, GlobalState.evalutionSet.Configurations, out relativeError);
                                }
                                else
                                {
                                    double relativeErro2r = learnedModel.computeError(lr.FeatureSet, GlobalState.allMeasurements.Configurations, out relativeError);
                                }

                                GlobalState.logInfo.logLine(lr.ToString() + relativeError);
                            }
                        }

                        break;
                    }
                case COMMAND_EXERIMENTALDESIGN:
                    performOneCommand_ExpDesign(task);
                    break;

                case COMMAND_SAMPLING_OPTIONORDER:
                    parseOptionOrder(task);
                    break;

                case COMMAND_VARIABILITYMODEL:
                    GlobalState.varModel = VariabilityModel.loadFromXML(task);
                    if (GlobalState.varModel == null)
                        GlobalState.logError.logLine("No variability model found at " + task);
                    break;
                case COMMAND_SET_NFP:
                    GlobalState.currentNFP = GlobalState.getOrCreateProperty(task.Trim());
                    break;
                case COMMAND_SAMPLE_OPTIONWISE:
                    if (taskAsParameter.Contains(COMMAND_VALIDATION))
                    {
                        this.toSampleValidation.Add(SamplingStrategies.OPTIONWISE);
                        this.exp.info.binarySamplings_Validation = "OPTIONSWISE";
                    }
                    else
                    {
                        this.toSample.Add(SamplingStrategies.OPTIONWISE);
                        this.exp.info.binarySamplings_Learning = "OPTIONSWISE";
                    }
                    break;

                case COMMAND_LOG:

                    string location = task.Trim();
                    GlobalState.logInfo.close();
                    GlobalState.logInfo = new InfoLogger(location);

                    GlobalState.logError.close();
                    GlobalState.logError = new ErrorLogger(location + "_error");
                    break;
                case COMMAND_SET_MLSETTING:
                    this.mlSettings = ML_Settings.readSettings(task);
                    break;
                case COMMAND_LOAD_MLSETTINGS:
                    this.mlSettings = ML_Settings.readSettingsFromFile(task);
                    break;

                case COMMAND_SAMPLE_PAIRWISE:

                    if (taskAsParameter.Contains(COMMAND_VALIDATION))
                    {
                        this.toSampleValidation.Add(SamplingStrategies.PAIRWISE);
                        this.exp.info.binarySamplings_Validation = "PAIRWISE";
                    }
                    else
                    {
                        this.toSample.Add(SamplingStrategies.PAIRWISE);
                        this.exp.info.binarySamplings_Learning = "PAIRWISE";
                    }
                    break;

                case COMMAND_PRINT_MLSETTINGS:
                    GlobalState.logInfo.logLine(this.mlSettings.ToString());
                    break;

                case COMMAND_PRINT_CONFIGURATIONS:
                    {
                       /* List<Dictionary<NumericOption, double>> numericSampling = exp.NumericSelection_Learning;
                        List<List<BinaryOption>> binarySampling = exp.BinarySelections_Learning;

                        List<Configuration> configurations = new List<Configuration>();

                        foreach (Dictionary<NumericOption, double> numeric in numericSampling)
                        {
                            foreach (List<BinaryOption> binary in binarySampling)
                            {
                                Configuration config = Configuration.getConfiguration(binary, numeric);
                                if (!configurations.Contains(config) && GlobalState.varModel.configurationIsValid(config))
                                {
                                    configurations.Add(config);
                                }
                            }
                        }*/

                        var configs = ConfigurationBuilder.buildConfigs(GlobalState.varModel, this.toSample);

                        string[] para = task.Split(new char[] { ' ' });
                        // TODO very error prone..
                        ConfigurationPrinter printer = new ConfigurationPrinter(para[0], para[1], para[2], GlobalState.optionOrder);
                        printer.print(configs);

                        break;
                    }
                case COMMAND_SAMPLE_BINARY_RANDOM:
                    {
                        string[] para = task.Split(new char[] { ' ' });
                        ConfigurationBuilder.binaryThreshold = Convert.ToInt32(para[0]);
                        ConfigurationBuilder.binaryModulu = Convert.ToInt32(para[1]);

                        VariantGenerator vg = new VariantGenerator(null);
                        if (taskAsParameter.Contains(COMMAND_VALIDATION))
                        {
                            this.toSampleValidation.Add(SamplingStrategies.BINARY_RANDOM);
                            this.exp.info.binarySamplings_Validation = "BINARY_RANDOM";
                        }
                        else
                        {
                            this.toSample.Add(SamplingStrategies.BINARY_RANDOM);
                            this.exp.info.binarySamplings_Learning = "BINARY_RANDOM " + task;
                        }
                        break;
                    }
                case COMMAND_START_LEARNING:
                    {
                        InfluenceModel infMod = new InfluenceModel(GlobalState.varModel, GlobalState.currentNFP);
                        List<Configuration> configurationsLearning = buildSet(this.toSample);
                        List<Configuration> configurationsValidation = buildSet(this.toSampleValidation);

                        if (configurationsLearning.Count == 0)
                        {
                            configurationsLearning = configurationsValidation;
                        }

                        if (configurationsLearning.Count == 0)
                        {
                            GlobalState.logInfo.logLine("The learning set is empty! Cannot start learning!");
                            break;
                        }

                        if (configurationsValidation.Count == 0)
                        {
                            configurationsValidation = configurationsLearning;
                        }

                        GlobalState.logInfo.logLine("Learning: " + "NumberOfConfigurationsLearning:" + configurationsLearning.Count + " NumberOfConfigurationsValidation:" + configurationsValidation.Count);
                        //+ " UnionNumberOfConfigurations:" + (configurationsLearning.Union(configurationsValidation)).Count()); too costly to compute

                        // We have to reuse the list of models because of NotifyCollectionChangedEventHandlers that might be attached to the list of models.
                        exp.models.Clear();
                        var mod = exp.models;
                        exp = new MachineLearning.Learning.Regression.Learning(configurationsLearning, configurationsValidation);
                        exp.models = mod;

                        exp.metaModel = infMod;
                        exp.mLsettings = this.mlSettings;
                        exp.learn();
                        GlobalState.logInfo.logLine("Average model: \n" + exp.metaModel.printModelAsFunction());
                        double relativeError = 0;
                        if (GlobalState.evalutionSet.Configurations.Count > 0)
                        {
                            relativeError = FeatureSubsetSelection.computeError(exp.metaModel, GlobalState.evalutionSet.Configurations, ML_Settings.LossFunction.RELATIVE);
                        }
                        else
                        {
                            relativeError = FeatureSubsetSelection.computeError(exp.metaModel, GlobalState.allMeasurements.Configurations, ML_Settings.LossFunction.RELATIVE);
                        }

                        GlobalState.logInfo.logLine("Error :" + relativeError);
                    }
                    break;

                case COMMAND_SAMPLE_NEGATIVE_OPTIONWISE:
                    // TODO there are two different variants in generating NegFW configurations.

                    if (taskAsParameter.Contains(COMMAND_VALIDATION))
                    {
                        this.toSampleValidation.Add(SamplingStrategies.NEGATIVE_OPTIONWISE);
                        this.exp.info.binarySamplings_Validation = "NEGATIVE_OPTIONWISE";
                    }
                    else
                    {
                        this.toSample.Add(SamplingStrategies.NEGATIVE_OPTIONWISE);
                        this.exp.info.binarySamplings_Learning = "NEGATIVE_OPTIONWISE";
                    }
                    break;
                default:
                    return command;
            }
            return "";
        }
        /// <summary>
        /// Invokes if the loadMeasurementButton has been pressed.
        /// 
        /// A window will be opened to load the measurements. If the XML-file does not have the
        /// appropriate form or does not fit with the current variability model, an error message
        /// will be displayed.
        /// </summary>
        /// <param name="sender">Sender</param>
        /// <param name="e">Event</param>
        private void loadMeasurementButton_Click(object sender, EventArgs e)
        {
            if (!modelLoaded)
            {
                MessageBox.Show(ERROR_NO_MODEL_LOADED);
                return;
            }

            OpenFileDialog dialog = new OpenFileDialog();
            string filePath = "";

            dialog.Filter = "xml files (*.xml)|*.xml|All files (*.*)|*.*";

            if (dialog.ShowDialog() == DialogResult.OK)
            {
                System.IO.FileInfo fi = new System.IO.FileInfo(dialog.FileName);
                filePath = fi.FullName;
            }

            if (filePath == "")
                return;

            try
            {
                GlobalState.clear();
                GlobalState.varModel = currentModel;

                Commands co = new Commands();
                co.performOneCommand(Commands.COMMAND_LOAD_CONFIGURATIONS + " " + filePath);

                measurementsLoaded = true;
                nfpValueCombobox.Items.Clear();
            }
            catch
            {
                MessageBox.Show(ERROR_MEASUREMENTS_INCOMPATIBLE);
            }

            updateMeasurementTab();
        }
Пример #4
0
        /// <summary>
        /// Performs the functionality of one command. If no functionality is found for the command, the command is retuned by this method. 
        /// </summary>
        /// <param name="line">One command with its parameters.</param>
        /// <returns>Returns an empty string if the command could be performed by the method. If the command could not be performed by the method, the original command is returned.</returns>
        public string performOneCommand(string line)
        {
            GlobalState.logInfo.log(COMMAND + line);

            // remove comment part of the line (the comment starts with an #)
            line = line.Split(new Char[] { '#' }, 2)[0];
            if (line.Length == 0)
                return "";

            // split line in command and parameters of the command
            string[] components = line.Split(new Char[] { ' ' }, 2);
            string command = components[0];
            string task = "";
            if (components.Length > 1)
                task = components[1];

            string[] taskAsParameter = task.Split(new Char[] { ' ' });

            switch (command.ToLower())
            {
                case COMMAND_TRUEMODEL:
                    StreamReader readModel = new StreamReader(task);
                    String model = readModel.ReadLine().Trim();
                    readModel.Close();
                    exp.TrueModel = new InfluenceFunction(model.Replace(',','.'), GlobalState.varModel);
                    NFProperty artificalProp = new NFProperty("artificial");
                    GlobalState.currentNFP = artificalProp;
                    computeEvaluationDataSetBasedOnTrueModel();
                    break;

                case COMMAND_SUBSCRIPT:
                    {

                        FileInfo fi = new FileInfo(task);
                        StreamReader reader = null;
                        if (!fi.Exists)
                            throw new FileNotFoundException(@"Automation script not found. ", fi.ToString());

                        reader = fi.OpenText();
                        Commands co = new Commands();
                        co.exp = this.exp;

                        while (!reader.EndOfStream)
                        {
                            String oneLine = reader.ReadLine().Trim();
                            co.performOneCommand(oneLine);

                        }
                    }
                    break;
                case COMMAND_EVALUATION_SET:
                    {
                        GlobalState.evalutionSet.Configurations = ConfigurationReader.readConfigurations(task, GlobalState.varModel);
                        GlobalState.logInfo.log("Evaluation set loaded.");
                    }
                    break;
                case COMMAND_CLEAR_GLOBAL:
                    SPLConqueror_Core.GlobalState.clear();
                    break;
                case COMMAND_CLEAR_SAMPLING:
                    exp.clearSampling();
                    break;
                case COMMAND_CLEAR_LEARNING:
                    exp.clear();
                    break;
                case COMMAND_LOAD_CONFIGURATIONS:
                    GlobalState.allMeasurements.Configurations = (GlobalState.allMeasurements.Configurations.Union(ConfigurationReader.readConfigurations(task, GlobalState.varModel))).ToList();
                    GlobalState.logInfo.log(GlobalState.allMeasurements.Configurations.Count + " configurations loaded.");

                    break;
                case COMMAND_SAMPLE_ALLBINARY:
                    {
                        VariantGenerator vg = new VariantGenerator(null);
                        if (taskAsParameter.Contains(COMMAND_VALIDATION))
                        {
                            exp.addBinarySelection_Validation(vg.generateAllVariantsFast(GlobalState.varModel));
                            exp.addBinarySampling_Validation(COMMAND_SAMPLE_ALLBINARY);
                        }
                        else
                        {
                            exp.addBinarySelection_Learning(vg.generateAllVariantsFast(GlobalState.varModel));
                            exp.addBinarySampling_Learning(COMMAND_SAMPLE_ALLBINARY);
                        }

                        break;
                    }
                case COMMAND_ANALYZE_LEARNING:
                    {
                        GlobalState.logInfo.log("Models:");
                        FeatureSubsetSelection learning = exp.learning;
                        if (learning == null)
                        {
                            GlobalState.logError.log("Error... learning was not performed!");
                            break;
                        }
                        foreach (LearningRound lr in learning.LearningHistory)
                        {
                            double relativeError = 0;
                            if (GlobalState.evalutionSet.Configurations.Count > 0)
                            {
                                double relativeErro2r = exp.learning.computeError(lr.FeatureSet, GlobalState.evalutionSet.Configurations, out relativeError);
                            }
                            else
                            {
                                double relativeErro2r = exp.learning.computeError(lr.FeatureSet, GlobalState.allMeasurements.Configurations, out relativeError);
                            }

                            GlobalState.logInfo.log(lr.ToString() + relativeError);
                        }

                        break;
                    }
                case COMMAND_EXERIMENTALDESIGN:
                    performOneCommand_ExpDesign(task);
                    break;

                case COMMAND_SAMPLING_OPTIONORDER:
                    parseOptionOrder(task);
                    break;

                case COMMAND_VARIABILITYMODEL:
                    GlobalState.varModel = VariabilityModel.loadFromXML(task);
                    if (GlobalState.varModel == null)
                        GlobalState.logError.log("No variability model found at " + task);
                    break;
                case COMMAND_SET_NFP:
                    GlobalState.currentNFP = GlobalState.getOrCreateProperty(task.Trim());
                    break;
                case COMMAND_SAMPLE_OPTIONWISE:
                    FeatureWise fw = new FeatureWise();
                    if (taskAsParameter.Contains(COMMAND_VALIDATION))
                    {
                        exp.addBinarySelection_Validation(fw.generateFeatureWiseConfigsCSP(GlobalState.varModel));
                        exp.addBinarySampling_Validation("FW");
                    }
                    else
                    {
                        //exp.addBinarySelection_Learning(fw.generateFeatureWiseConfigsCSP(GlobalState.varModel));
                        exp.addBinarySelection_Learning(fw.generateFeatureWiseConfigurations(GlobalState.varModel));
                        exp.addBinarySampling_Learning("FW");
                    }
                    break;

                case COMMAND_LOG:

                    string location = task.Trim();
                    GlobalState.logInfo.close();
                    GlobalState.logInfo = new InfoLogger(location);

                    GlobalState.logError.close();
                    GlobalState.logError = new ErrorLogger(location + "_error");
                    break;
                case COMMAND_SET_MLSETTING:
                    exp.mlSettings = ML_Settings.readSettings(task);
                    break;
                case COMMAND_LOAD_MLSETTINGS:
                    exp.mlSettings = ML_Settings.readSettingsFromFile(task);
                    break;

                case COMMAND_SAMPLE_PAIRWISE:
                    PairWise pw = new PairWise();
                    if (taskAsParameter.Contains(COMMAND_VALIDATION))
                    {
                        exp.addBinarySelection_Validation(pw.generatePairWiseVariants(GlobalState.varModel));
                        exp.addBinarySampling_Validation("PW");
                    }
                    else
                    {
                        exp.addBinarySelection_Learning(pw.generatePairWiseVariants(GlobalState.varModel));
                        exp.addBinarySampling_Learning("PW");
                    }
                    break;

                case COMMAND_PRINT_MLSETTINGS:
                    GlobalState.logInfo.log(exp.mlSettings.ToString());
                    break;

                case COMMAND_PRINT_CONFIGURATIONS:
                    {
                        List<Dictionary<NumericOption, double>> numericSampling = exp.NumericSelection_Learning;
                        List<List<BinaryOption>> binarySampling = exp.BinarySelections_Learning;

                        List<Configuration> configurations = new List<Configuration>();

                        foreach (Dictionary<NumericOption, double> numeric in numericSampling)
                        {
                            foreach (List<BinaryOption> binary in binarySampling)
                            {
                                Configuration config = Configuration.getConfiguration(binary, numeric);
                                if (!configurations.Contains(config) && GlobalState.varModel.configurationIsValid(config))
                                {
                                    configurations.Add(config);
                                }
                            }
                        }
                        string[] para = task.Split(new char[] { ' ' });
                        // TODO very error prune..
                        ConfigurationPrinter printer = new ConfigurationPrinter(para[0], para[1], para[2], GlobalState.optionOrder);
                        printer.print(configurations);

                        break;
                    }
                case COMMAND_SAMPLE_BINARY_RANDOM:
                    {
                        string[] para = task.Split(new char[] { ' ' });
                        int treshold = Convert.ToInt32(para[0]);
                        int modulu = Convert.ToInt32(para[1]);

                        VariantGenerator vg = new VariantGenerator(null);
                        if (taskAsParameter.Contains(COMMAND_VALIDATION))
                        {
                            exp.addBinarySelection_Validation(vg.generateRandomVariants(GlobalState.varModel, treshold, modulu));
                            exp.addBinarySampling_Validation("random " + task);
                        }
                        else
                        {
                            exp.addBinarySelection_Learning(vg.generateRandomVariants(GlobalState.varModel, treshold, modulu));
                            exp.addBinarySampling_Learning("random " + task);
                        }
                        break;
                    }
                case COMMAND_START_LEARNING:
                    {
                        InfluenceModel infMod = new InfluenceModel(GlobalState.varModel, GlobalState.currentNFP);

                        List<Configuration> configurations_Learning = new List<Configuration>();

                        List<Configuration> configurations_Validation = new List<Configuration>();

                        if (exp.TrueModel == null)
                        {
                            //List<List<BinaryOption>> availableBinary
                            //configurations_Learning = GlobalState.getMeasuredConfigs(exp.BinarySelections_Learning, exp.NumericSelection_Learning);
                            configurations_Learning = GlobalState.getMeasuredConfigs(Configuration.getConfigurations(exp.BinarySelections_Learning, exp.NumericSelection_Learning));
                            configurations_Learning = configurations_Learning.Distinct().ToList();

                            configurations_Validation = GlobalState.getMeasuredConfigs(Configuration.getConfigurations(exp.BinarySelections_Validation, exp.NumericSelection_Validation));
                            configurations_Validation = configurations_Validation.Distinct().ToList();
                            //break;//todo only to get the configurations that we haven't measured
                        } else
                        {
                            foreach (List<BinaryOption> binConfig in exp.BinarySelections_Learning)
                            {
                                if (exp.NumericSelection_Learning.Count == 0)
                                {
                                    Configuration c = new Configuration(binConfig);
                                    c.setMeasuredValue(GlobalState.currentNFP, exp.TrueModel.eval(c));
                                    if (!configurations_Learning.Contains(c))
                                        configurations_Learning.Add(c);
                                    continue;
                                }
                                foreach (Dictionary<NumericOption, double> numConf in exp.NumericSelection_Learning)
                                {

                                    Configuration c = new Configuration(binConfig, numConf);
                                    c.setMeasuredValue(GlobalState.currentNFP, exp.TrueModel.eval(c));
                                    if(GlobalState.varModel.configurationIsValid(c))
                //                    if (!configurations_Learning.Contains(c))
                                        configurations_Learning.Add(c);
                                }
                            }

                        }
                            if (configurations_Learning.Count == 0)
                            {
                                configurations_Learning = configurations_Validation;
                            }

                            if (configurations_Learning.Count == 0)
                            {
                                GlobalState.logInfo.log("The learning set is empty! Cannot start learning!");
                                break;
                            }

                            if (configurations_Validation.Count == 0)
                            {
                                configurations_Validation = configurations_Learning;
                            }
                            //break;
                            GlobalState.logInfo.log("Learning: " + "NumberOfConfigurationsLearning:" + configurations_Learning.Count + " NumberOfConfigurationsValidation:" + configurations_Validation.Count
                            + " UnionNumberOfConfigurations:" + (configurations_Learning.Union(configurations_Validation)).Count());

                        // prepare the machine learning
                        exp.learning.init(infMod, exp.mlSettings);
                        exp.learning.setLearningSet(configurations_Learning);
                        exp.learning.setValidationSet(configurations_Validation);
                        exp.learning.learn();

                    }
                    break;

                case COMMAND_SAMPLE_NEGATIVE_OPTIONWISE:
                    // TODO there are two different variants in generating NegFW configurations.
                    NegFeatureWise neg = new NegFeatureWise();

                    if (taskAsParameter.Contains(COMMAND_VALIDATION))
                    {
                        exp.addBinarySelection_Validation(neg.generateNegativeFW(GlobalState.varModel));
                        exp.addBinarySampling_Validation("newFW");
                    }
                    else
                    {
                        exp.addBinarySelection_Learning(neg.generateNegativeFW(GlobalState.varModel));//neg.generateNegativeFWAllCombinations(GlobalState.varModel));
                        exp.addBinarySampling_Learning("newFW");
                    }
                    break;
                default:
                    return command;
            }
            return "";
        }