Пример #1
0
        public List <PredictionResult> DoStacking(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizeFormat = Normalize.OneMinusOne)
        {
            List <PredictionResult> classifiers = new List <PredictionResult>();

            //For each classifier run a crossvalidation and find the best params
            foreach (StdClassifier classifier in standardClassifiers)
            {
                List <PredictionResult> results = classifier.OldCrossValidate(feelingsmodel, 1, useIAPSratings, normalizeFormat);
                classifiers.Add(results.OrderBy(x => x.GetAverageFScore()).First());
            }


            List <List <double> > featureList = new List <List <double> >();

            //Create a List of list of answers from each machine
            for (int i = 0; i < samData.dataPoints.Count; i++)
            {
                List <double> featuresToDataPoint = new List <double>();
                foreach (PredictionResult classifier in classifiers)
                {
                    featuresToDataPoint.Add(classifier.guesses[i]);
                }
                featureList.Add(featuresToDataPoint);
            }
            //Split into nfold problems
            List <Tuple <SVMProblem, SVMProblem> > problems = featureList.GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings);

            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();

            List <PredictionResult> finalResults = new List <PredictionResult>();

            //Run for each parameter setting
            int cnt = 1;

            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(cnt++, Parameters.Count);
                }
                List <double> guesses = new List <double>();
                //model and predict each nfold
                foreach (Tuple <SVMProblem, SVMProblem> tupleProblem in problems)
                {
                    guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, new List <Feature> {
                }, answers.ToList(), guesses.ConvertAll(x => (int)x));
                finalResults.Add(pR);
            }
            return(finalResults);
        }
Пример #2
0
 public Classifier(string Name, SVMParameter Parameter, SAMData samData)
 {
     this.Name       = Name;
     this.Parameters = new List <SVMParameter>()
     {
         Parameter
     };
     this.samData = samData;
 }
Пример #3
0
 public Classifier(string Name, List <SVMParameter> Parameters, SAMData samData)
 {
     this.Name       = Name;
     this.Parameters = new List <SVMParameter>();
     Parameters.ForEach((x) =>
     {
         this.Parameters.Add(x);
     });
     this.samData = samData;
 }
Пример #4
0
 public Classifier(string Name, List<SVMParameter> Parameters, SAMData samData)
 {
     this.Name = Name;
     this.Parameters = new List<SVMParameter>();
     Parameters.ForEach((x) =>
     {
         this.Parameters.Add(x);
     });
     this.samData = samData;
 }
Пример #5
0
        public List<double> GetAllValues(SAMData samd)
        {
            if (dataReadings == null)
            {
                throw new Exception("ERROR: You need to call SetData before this function is usable");
            }

            List<double> values = new List<double>();
            foreach (SAMDataPoint sd in samd.dataPoints)
            {
               values.Add(GetValue(sd));
            }
            return values;
        }
Пример #6
0
        public List <double> GetAllValues(SAMData samd)
        {
            if (dataReadings == null)
            {
                throw new Exception("ERROR: You need to call SetData before this function is usable");
            }

            List <double> values = new List <double>();

            foreach (SAMDataPoint sd in samd.dataPoints)
            {
                values.Add(GetValue(sd));
            }
            return(values);
        }
Пример #7
0
        public static SAMData LoadFromPath(string path)
        {
            SAMData data = new SAMData();

            try
            {
                System.Web.Script.Serialization.JavaScriptSerializer hej = new System.Web.Script.Serialization.JavaScriptSerializer();
                string jsonTxt = File.ReadAllText(path);
                hej.MaxJsonLength = int.MaxValue;
                var JObj = hej.Deserialize<dynamic>(jsonTxt);

                data.startTime = DateTimeFromUnixTime((long)JObj["startTime"]);

                int i = 0;
                while (true)
                {
                    try
                    {
                        data.dataPoints.Add(new SAMDataPoint(
                            JObj["data"][i]["time_image_shown"],
                            JObj["data"][i]["time_clicked_next"],
                            int.Parse(JObj["data"][i]["arousal"]),
                            int.Parse(JObj["data"][i]["valence"]),
                            (double)JObj["data"][i]["control_arousal"],
                            (double)JObj["data"][i]["control_valence"],
                            JObj["data"][i]["image_type"]
                        ));

                        i++;
                    }
                    catch
                    {
                        if (i == 0)
                        {
                            //Log.LogMessage(innerE.Message);
                        }
                        break;
                    }
                }

            }
            catch
            {
                //Log.LogMessage("[ERROR] SAM data is corrupt!" + "\n" + e.Message);
            }
            return data;
        }
Пример #8
0
        public static SAMData LoadFromPath(string path)
        {
            SAMData data = new SAMData();

            try
            {
                System.Web.Script.Serialization.JavaScriptSerializer hej = new System.Web.Script.Serialization.JavaScriptSerializer();
                string jsonTxt = File.ReadAllText(path);
                hej.MaxJsonLength = int.MaxValue;
                var JObj = hej.Deserialize <dynamic>(jsonTxt);

                data.startTime = DateTimeFromUnixTime((long)JObj["startTime"]);

                int i = 0;
                while (true)
                {
                    try
                    {
                        data.dataPoints.Add(new SAMDataPoint(
                                                JObj["data"][i]["time_image_shown"],
                                                JObj["data"][i]["time_clicked_next"],
                                                int.Parse(JObj["data"][i]["arousal"]),
                                                int.Parse(JObj["data"][i]["valence"]),
                                                (double)JObj["data"][i]["control_arousal"],
                                                (double)JObj["data"][i]["control_valence"],
                                                JObj["data"][i]["image_type"]
                                                ));

                        i++;
                    }
                    catch
                    {
                        if (i == 0)
                        {
                            //Log.LogMessage(innerE.Message);
                        }
                        break;
                    }
                }
            }
            catch
            {
                //Log.LogMessage("[ERROR] SAM data is corrupt!" + "\n" + e.Message);
            }
            return(data);
        }
Пример #9
0
        /// <summary>
        /// Get the values for each features
        /// </summary>
        /// <param name="Features"></param>
        /// <returns>A List for each datapoint which contains the feature values for that datapoint</returns>
        private List <List <double> > GetFeatureValues(List <Feature> Features, SAMData samd)
        {
            List <List <double> > temp = new List <List <double> >();

            for (int j = 0; j < samd.dataPoints.Count; j++)
            {
                temp.Add(new List <double>());
            }
            foreach (Feature f in Features)
            {
                List <double> values = f.GetAllValues(samd);
                for (int i = 0; i < values.Count; i++)
                {
                    temp[i].Add(values[i]);
                }
            }
            return(temp);
        }
Пример #10
0
        public List <PredictionResult> CrossValidateWithBoosting(SAMDataPoint.FeelingModel feelingsmodel, int nFold, double[] answersFromPrevious, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <PredictionResult> predictedResults = new List <PredictionResult>();

            List <List <double> > tempFeatuers = GetFeatureValues(features, samData);

            if (answersFromPrevious.Length != tempFeatuers.Count)
            {
                //answers from previous is not the same size as current feature list, e.g. something is wrong
                Log.LogMessage("The number of guessses from previous machine is the same as number of datapoints in this");
                return(null);
            }
            //Split into crossvalidation parts
            List <List <double> > tempFeatures = tempFeatuers.NormalizeFeatureList <double>(normalizationType).ToList();

            for (int i = 0; i < tempFeatuers.Count; i++)
            {
                tempFeatuers[i].Add(answersFromPrevious[i]);
            }
            List <Tuple <SVMProblem, SVMProblem> > problems = tempFeatuers.GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings);


            //Get correct results
            int[] answers = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();

            foreach (SVMParameter SVMpara in Parameters)
            {
                List <double> guesses = new List <double>();
                //model and predict each nfold
                foreach (Tuple <SVMProblem, SVMProblem> tupleProblem in problems)
                {
                    guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), guesses.ConvertAll(x => (int)x).ToList());
                predictedResults.Add(pR);
            }
            return(predictedResults);
        }
Пример #11
0
 public MetaClassifier(string Name, SVMParameter Parameter, SAMData SamData, List<StdClassifier> Classifiers)
     : base(Name, Parameter, SamData)
 {
     standardClassifiers = Classifiers;
 }
Пример #12
0
        bool LoadData(string path, FusionData fd)
        {
            currentPath = path;
            Log.LogMessage("Selected folder: " + path);
            //load fusion data
            samData = SAMData.LoadFromPath(path + @"\SAM.json");
            string temp = samData.ShouldSkip();
            if (!(temp == ""))
            {
                Log.LogMessage(temp);
                return false;
            }
            shouldRun = fd.LoadFromFile(new string[] { path + @"\EEG.dat", path + @"\GSR.dat", path + @"\HR.dat", path + @"\KINECT.dat" }, samData.startTime);
            //Slicing
            List<SAMDataPoint> throwaway = new List<SAMDataPoint>();
            foreach (SAMDataPoint samD in samData.dataPoints)
            {
                if (FeatureCreator.EEGDataSlice(fd.eegData.ToList<DataReading>(), samD).Count == 0 ||
                    FeatureCreator.GSRDataSlice(fd.gsrData.ToList<DataReading>(), samD).Count == 0 ||
                    FeatureCreator.HRDataSlice(fd.hrData.ToList<DataReading>(), samD).Count == 0 ||
                    FeatureCreator.FaceDataSlice(fd.faceData.ToList<DataReading>(), samD).Count == 0)
                {
                    throwaway.Add(samD);
                }
            }

            if (throwaway.Count > 5)
            {
                return false;
            }

            for (int i = 0; i < throwaway.Count; i++)
            {
                Log.LogMessage("Threw away a sam data point");
                samData.dataPoints.Remove(throwaway[i]);
            }
            if (throwaway.Count > 5 && samData.ShouldSkip() == "")
            {
                Log.LogMessage("Too many data points thrown away (" + throwaway.Count + ")");
                return false;
            }
            Log.LogMessage("Fusion Data loaded!");

            Log.LogMessage("Applying data to features..");

            FeatureCreator.GSRArousalOptimizationFeatures.ForEach(x => x.SetData(fd.gsrData.ToList<DataReading>()));
            FeatureCreator.HRArousalOptimizationFeatures.ForEach(x => x.SetData(fd.hrData.ToList<DataReading>()));
            FeatureCreator.HRValenceOptimizationFeatures.ForEach(x => x.SetData(fd.hrData.ToList<DataReading>()));
            FeatureCreator.EEGArousalOptimizationFeatures.ForEach(x => x.SetData(fd.eegData.ToList<DataReading>()));
            FeatureCreator.EEGValenceOptimizationFeatures.ForEach(x => x.SetData(fd.eegData.ToList<DataReading>()));
            FeatureCreator.FACEArousalOptimizationFeatures.ForEach(x => x.SetData(fd.faceData.ToList<DataReading>()));
            FeatureCreator.FACEValenceOptimizationFeatures.ForEach(x => x.SetData(fd.faceData.ToList<DataReading>()));

            Log.LogMessage("Looking for configurations...");

            svmConfs.Clear();
            if (Directory.Exists(path + @"\STD"))
            {
                var files = Directory.GetFiles(path + @"\STD");
                Log.LogMessage("Found STD! Contains " + files.Length + " configurations.");
                foreach (var item in files)
                {
                    svmConfs.Add(SVMConfiguration.Deserialize(File.ReadAllText(item)));
                }

            }

            if (Directory.Exists(path + @"\META"))
            {
                var files = Directory.GetFiles(path + @"\META");
                Log.LogMessage("Found META! Contains " + files.Length + " configurations.");
                /* same procedure?? */
                foreach (var item in files)
                {
                    metaConfs.Add(MetaSVMConfiguration.Deserialize(File.ReadAllText(item)));
                }
            }

            if (svmConfs.Count == 0 && metaConfs.Count == 0)
            {
                Log.LogMessage("No configurations found, maybe you should run some optimizations on some features.");
            }
            return true;
        }
Пример #13
0
 public StdClassifier(string Name, SVMParameter Parameter, List<Feature> Features, SAMData samData)
     : base(Name, Parameter, samData)
 {
     features = new List<Feature>(Features);
 }
Пример #14
0
 public StdClassifier(SVMConfiguration conf, SAMData samData)
     : base(conf.Name, conf.GetParameter(), samData)
 {
     features = conf.GetFeautres();
 }
Пример #15
0
        /// <summary>
        /// Run crossvalidation for the feature setup for this machine
        /// </summary>
        /// <param name="feelingsmodel"></param>
        /// <param name="nFold"></param>
        /// <param name="useIAPSratings"></param>
        public List <PredictionResult> OldCrossValidate(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <PredictionResult> predictedResults = new List <PredictionResult>();
            //Split into crossvalidation parts
            List <Tuple <SVMProblem, SVMProblem> > problems = GetFeatureValues(features, samData).NormalizeFeatureList <double>(normalizationType).GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings);

            //Get correct results
            int[] answers             = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   progressCounter     = 0;
            bool  postedOneClassError = false;

            if (answers.Distinct().Count() <= 1)
            {
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(answers.ToList().ConvertAll(x => (double)x).ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), features, answers.ToList(), answers.ToList().ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                Log.LogMessage(ONLY_ONE_CLASS);
                Log.LogMessage("");
                return(predictedResults);
            }
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
                List <double> guesses = new List <double>();
                //model and predict each nfold
                try
                {
                    foreach (Tuple <SVMProblem, SVMProblem> tupleProblem in problems)
                    {
                        SVMModel trainingModel = tupleProblem.Item1.Train(SVMpara);
                        if (trainingModel.ClassCount <= 1)
                        {
                            if (!postedOneClassError)
                            {
                                Log.LogMessage(ONLY_ONE_CLASS_IN_TRAINING);
                                postedOneClassError = true;
                            }
                            guesses.AddRange(tupleProblem.Item1.Y.ToList().Take(tupleProblem.Item2.Y.Count()).ToList());
                        }
                        else
                        {
                            double[] d = tupleProblem.Item2.Predict(trainingModel);
                            guesses.AddRange(d);
                        }
                    }
                }
                catch (Exception e)
                {
                    for (int i = 0; i < samData.dataPoints.Count; i++)
                    {
                        guesses.Add(-1);
                    }
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), guesses.ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
            }

            return(predictedResults);
        }
Пример #16
0
        /// <summary>
        /// Get the values for each features
        /// </summary>
        /// <param name="Features"></param>
        /// <returns>A List for each datapoint which contains the feature values for that datapoint</returns>
        private List<List<double>> GetFeatureValues(List<Feature> Features, SAMData samd)
        {
            List<List<double>> temp = new List<List<double>>();
            for (int j = 0; j < samd.dataPoints.Count; j++)
            {
                temp.Add(new List<double>());
            }
            foreach (Feature f in Features)
            {
                List<double> values = f.GetAllValues(samd);
                for (int i = 0; i < values.Count; i++)
                {
                    temp[i].Add(values[i]);
                }

            }
            return temp;
        }
Пример #17
0
        public PredictionResult DoVoting(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizeFormat = Normalize.OneMinusOne)
        {
            List <PredictionResult> classifiers = new List <PredictionResult>();
            //For each classifier run a crossvalidation and find the best params
            int prg = 0;

            foreach (StdClassifier classifier in standardClassifiers)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(prg++, standardClassifiers.Count);
                }
                List <PredictionResult> results = classifier.OldCrossValidate(feelingsmodel, 1, useIAPSratings, normalizeFormat);
                classifiers.Add(results.OrderBy(x => x.GetAverageFScore()).First());
            }
            if (UpdateCallback != null)
            {
                UpdateCallback(standardClassifiers.Count, standardClassifiers.Count);
            }
            int labelCount = SAMData.GetNumberOfLabels(feelingsmodel);

            //Full List of indicies
            List <int> counter = new List <int>();

            for (int k = 0; k < samData.dataPoints.Count(); k++)
            {
                counter.Add(k);
            }
            //Divide indicies into correct nfold
            List <List <int> > trainIndicies   = new List <List <int> >();
            List <List <int> > predictIndicies = new List <List <int> >();

            for (int i = 0; i < samData.dataPoints.Count(); i += nFold)
            {
                var temp = counter.Skip(i).Take(nFold).ToList();
                predictIndicies.Add(temp);
                trainIndicies.Add(counter.Except(temp).ToList());
            }


            List <Dictionary <int, double> > weightedGuesses = new List <Dictionary <int, double> >();

            //Fill up weightedGuesses List
            for (int nGuesses = 0; nGuesses < samData.dataPoints.Count; nGuesses++)
            {
                Dictionary <int, double> tempGuess = new Dictionary <int, double>();
                for (int indexClass = 0; indexClass < labelCount; indexClass++)
                {
                    tempGuess.Add(indexClass, 0);
                }
                weightedGuesses.Add(tempGuess);
            }

            //Split classifiers
            for (int i = 0; i < trainIndicies.Count; i++)
            {
                foreach (PredictionResult predictResult in classifiers)
                {
                    double correct = 0;
                    //calculate weights
                    for (int trainingIndex = 0; trainingIndex < trainIndicies[i].Count; trainingIndex++)
                    {
                        if (predictResult.guesses[trainIndicies[i][trainingIndex]] == samData.dataPoints[trainIndicies[i][trainingIndex]].ToAVCoordinate(feelingsmodel))
                        {
                            correct++;
                        }
                    }

                    //Add weight from the trainingset to each of the guesses
                    weightedGuesses[i][predictResult.guesses[i]] += (correct / trainIndicies.Count);
                }
            }

            //Calculate final answers
            List <double> guesses = new List <double>();

            foreach (Dictionary <int, double> answer in weightedGuesses)
            {
                int    tempKey = -1;
                double tempMax = -1;
                foreach (int key in answer.Keys)
                {
                    if (answer[key] > tempMax)
                    {
                        tempKey = key;
                        tempMax = answer[key];
                    }
                }
                guesses.Add(tempKey);
            }


            //Get correct results
            int[] answers        = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);


            //Calculate scoring results
            double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
            List <double> pres   = CalculatePrecision(confus, numberOfLabels);
            List <double> recall = CalculateRecall(confus, numberOfLabels);
            List <double> fscore = CalculateFScore(pres, recall);

            return(new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), new List <Feature> {
            }, answers.ToList(), guesses.ConvertAll(x => (int)x)));
        }
Пример #18
0
        public List <PredictionResult> CrossValidate(SAMDataPoint.FeelingModel feelingsmodel, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <PredictionResult> predictedResults = new List <PredictionResult>();
            //Split into crossvalidation parts
            SVMProblem problems = GetFeatureValues(features, samData).NormalizeFeatureList <double>(normalizationType).CreateCompleteProblem(samData, feelingsmodel);

            //Get correct results
            int[] answers         = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   progressCounter = 0;

            if (answers.Distinct().Count() <= 1)
            {
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(answers.ToList().ConvertAll(x => (double)x).ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, new SVMParameter(), features, answers.ToList(), answers.ToList().ConvertAll(x => (int)x));
                predictedResults.Add(pR);
                progressCounter++;
                Log.LogMessage(ONLY_ONE_CLASS);
                Log.LogMessage("");
                return(predictedResults);
            }
            else if (problems.X.Count == 0)
            {
                Log.LogMessage("Empty problem in " + Name);
                return(null);
            }
            foreach (SVMParameter SVMpara in Parameters)
            {
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
                double[] guesses = new double[samData.dataPoints.Count];
                //model and predict each nfold
                try
                {
                    problems.CrossValidation(SVMpara, samData.dataPoints.Count, out guesses);
                }
                catch (Exception e)
                {
                    for (int i = 0; i < samData.dataPoints.Count; i++)
                    {
                        guesses[i] = -1;
                    }
                }
                int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                //Calculate scoring results
                double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                List <double>    recall = CalculateRecall(confus, numberOfLabels);
                List <double>    fscore = CalculateFScore(pres, recall);
                PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, features, answers.ToList(), Array.ConvertAll(guesses, (x => (int)x)).ToList());
                predictedResults.Add(pR);
                progressCounter++;
                if (UpdateCallback != null)
                {
                    UpdateCallback(progressCounter, Parameters.Count);
                }
            }

            return(predictedResults);
        }
Пример #19
0
 public MetaClassifier(string Name, SVMParameter Parameter, SAMData SamData, List <StdClassifier> Classifiers) : base(Name, Parameter, SamData)
 {
     standardClassifiers = Classifiers;
 }
Пример #20
0
 public StdClassifier(SVMConfiguration conf, SAMData samData) : base(conf.Name, conf.GetParameter(), samData)
 {
     features = conf.GetFeautres();
 }
Пример #21
0
        /// <summary>
        /// Item1 is the training set, Item2 is the prediction set.
        /// </summary>
        /// <typeparam name="T"></typeparam>
        /// <param name="original"></param>
        /// <param name="nFold"></param>
        /// <returns>returns null if the collection can't be nfolded</returns>
        public static List <Tuple <SVMProblem, SVMProblem> > GetCrossValidationSets <T>(this IEnumerable <List <double> > original, SAMData samData, SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool UseIAPSRatings = false)
        {
            //TODO: Needs to be tested, can't test before data can be loaded into the program
            List <Tuple <SVMProblem, SVMProblem> > allSets = new List <Tuple <SVMProblem, SVMProblem> >();

            if (original.Count() % nFold != 0)
            {
                return(null);
            }

            //Full List of indicies
            List <int> counter = new List <int>();

            for (int k = 0; k < original.Count(); k++)
            {
                counter.Add(k);
            }
            //Divide indicies into correct nfold
            List <List <int> > trainIndicies   = new List <List <int> >();
            List <List <int> > predictIndicies = new List <List <int> >();

            for (int i = 0; i < original.Count(); i += nFold)
            {
                var temp = counter.Skip(i).Take(nFold).ToList();
                predictIndicies.Add(temp);
                trainIndicies.Add(counter.Except(temp).ToList());
            }


            for (int j = 0; j < original.Count(); j++)
            {
                //Create training problem
                SVMProblem trainSVMProblem = new SVMProblem();
                //Foreach training index, add features to the problem
                foreach (int trainIndex in trainIndicies[j])
                {
                    SVMNode[] featureVector = new SVMNode[original.ElementAt(trainIndex).Count];
                    for (int w = 0; w < original.ElementAt(trainIndex).Count; w++)
                    {
                        featureVector[w] = new SVMNode(w + 1, original.ElementAt(trainIndex)[w]);
                    }
                    trainSVMProblem.Add(featureVector, samData.dataPoints[trainIndex].ToAVCoordinate(feelingsmodel, UseIAPSRatings));
                }


                //Create predict problem
                SVMProblem predictSVMProblem = new SVMProblem();
                //Foreach predict index, add features to the problem
                foreach (int predictIndex in predictIndicies[j])
                {
                    SVMNode[] featureVector = new SVMNode[original.ElementAt(predictIndex).Count];
                    for (int w = 0; w < original.ElementAt(predictIndex).Count; w++)
                    {
                        featureVector[w] = new SVMNode(w + 1, original.ElementAt(predictIndex)[w]);
                    }
                    predictSVMProblem.Add(featureVector, samData.dataPoints[predictIndex].ToAVCoordinate(feelingsmodel, UseIAPSRatings));
                }

                allSets.Add(new Tuple <SVMProblem, SVMProblem>(trainSVMProblem, predictSVMProblem));
            }

            return(allSets);
        }
Пример #22
0
        public static SVMProblem CreateCompleteProblem(this IEnumerable <List <double> > original, SAMData sam, SAMDataPoint.FeelingModel feelingModel)
        {
            SVMProblem completeProblem = new SVMProblem();

            for (int i = 0; i < original.Count(); i++)
            {
                SVMNode[] nodeSet = new SVMNode[original.ElementAt(i).Count];
                for (int j = 0; j < original.ElementAt(i).Count; j++)
                {
                    SVMNode currentNode = new SVMNode();
                    currentNode.Index = j + 1;
                    currentNode.Value = original.ElementAt(i)[j];
                    nodeSet[j]        = currentNode;
                }
                completeProblem.Add(nodeSet, sam.dataPoints[i].ToAVCoordinate(feelingModel));
            }

            return(completeProblem);
        }
Пример #23
0
        /// <summary>
        /// Run crossvalidation for each combination of the features for this machine
        /// </summary>
        /// <param name="feelingsmodel"></param>
        /// <param name="nFold"></param>
        /// <param name="useIAPSratings"></param>
        public List <PredictionResult> CrossValidateCombinations(SAMDataPoint.FeelingModel feelingsmodel, int nFold, bool useIAPSratings = false, Normalize normalizationType = Normalize.OneMinusOne)
        {
            List <List <bool> > combinations = CalculateCombinations(new List <bool>()
            {
            }, features.Count);

            //Get different combination of problems
            List <Tuple <List <Tuple <SVMProblem, SVMProblem> >, List <Feature> > > featureCombinationProblems = new List <Tuple <List <Tuple <SVMProblem, SVMProblem> >, List <Feature> > >();

            for (int i = 0; i < combinations.Count; i++)
            {
                List <Feature> tempFeatures = new List <Feature>();
                for (int j = 0; j < combinations[i].Count; j++)
                {
                    // For each feature combination save the different problems for crossvalidation

                    if (combinations[i][j] == true)
                    {
                        tempFeatures.Add(features[j]);
                    }
                }
                featureCombinationProblems.Add
                (
                    new Tuple <List <Tuple <SVMProblem, SVMProblem> >, List <Feature> >
                    (
                        GetFeatureValues(tempFeatures, samData).NormalizeFeatureList <double>(normalizationType).GetCrossValidationSets <double>(samData, feelingsmodel, nFold, useIAPSratings),
                        tempFeatures
                    )
                );
            }

            //Get correct results
            int[] answers         = samData.dataPoints.Select(x => x.ToAVCoordinate(feelingsmodel, useIAPSratings)).ToArray();
            int   progressCounter = 0;
            List <PredictionResult> predictionResults = new List <PredictionResult>();

            foreach (SVMParameter SVMpara in Parameters)
            {
                //For each feature setup
                for (int n = 0; n < featureCombinationProblems.Count; n++)
                {
                    if (UpdateCallback != null)
                    {
                        UpdateCallback(progressCounter, Parameters.Count * featureCombinationProblems.Count);
                    }
                    //PrintProgress(progressCounter, featureCombinationProblems.Count);
                    List <double> guesses = new List <double>();
                    //model and predict each nfold
                    foreach (var tupleProblem in featureCombinationProblems[n].Item1)
                    {
                        guesses.AddRange(tupleProblem.Item2.Predict(tupleProblem.Item1.Train(SVMpara)));
                    }
                    int numberOfLabels = SAMData.GetNumberOfLabels(feelingsmodel);
                    //Calculate scoring results
                    double[,] confus = CalculateConfusion(guesses.ToArray(), answers, numberOfLabels);
                    List <double>    pres   = CalculatePrecision(confus, numberOfLabels);
                    List <double>    recall = CalculateRecall(confus, numberOfLabels);
                    List <double>    fscore = CalculateFScore(pres, recall);
                    PredictionResult pR     = new PredictionResult(confus, recall, pres, fscore, SVMpara, featureCombinationProblems[n].Item2, answers.ToList(), guesses.ConvertAll(x => (int)x));
                    predictionResults.Add(pR);
                    progressCounter++;
                }
            }
            if (UpdateCallback != null)
            {
                UpdateCallback(progressCounter, Parameters.Count * featureCombinationProblems.Count);
            }

            return(predictionResults);
        }
Пример #24
0
 public Classifier(string Name, SVMParameter Parameter, SAMData samData)
 {
     this.Name = Name;
     this.Parameters = new List<SVMParameter>() { Parameter };
     this.samData = samData;
 }
Пример #25
0
 public StdClassifier(string Name, SVMParameter Parameter, List <Feature> Features, SAMData samData) : base(Name, Parameter, samData)
 {
     features = new List <Feature>(Features);
 }