Пример #1
0
        private void recognizeButton_Click(object sender, EventArgs e)
        {
            var bitmap      = new Bitmap(charPictureBox.Image);
            var inputVector = new double[IMG_WIDHT * IMG_HEIGHT];

            for (var x = 0; x < bitmap.Width; x++)
            {
                for (var y = 0; y < bitmap.Height; y++)
                {
                    var pixel = bitmap.GetPixel(x, y);
                    inputVector[y + x * IMG_HEIGHT] = Convert.ToDouble(pixel.R == 0 && pixel.G == 0 && pixel.B == 0);
                }
            }

            NumberRecognizerNeuralNetwork numberRecognizerNeuralNetwork = new NumberRecognizerNeuralNetwork(this.neuralNetwork);
            int result = numberRecognizerNeuralNetwork.GetNumberFromImgVector(inputVector);

            answerListBox.Items.Clear();
            foreach (var neuron in numberRecognizerNeuralNetwork.GetNeuralNetwork().GetLastLayer().GetListNeurons())
            {
                answerListBox.Items.Add(Math.Round(neuron.GetOutputData(), 5).ToString());
            }

            if (result == -1)
            {
                MessageBox.Show("Can not recognize char.");
            }
            else
            {
                MessageBox.Show($"Char is: {result}.");
            }
        }
Пример #2
0
        private void educateNetworkButton_Click(object sender, EventArgs e)
        {
            UncertaintyPropagationMethod  uncertaintyPropagationMethod  = new UncertaintyPropagationMethod(LEARNING_RATE);
            NumberRecognizerNeuralNetwork numberRecognizerNeuralNetwork = new NumberRecognizerNeuralNetwork(this.neuralNetwork);

            MachineLearning.NeuralNetwork.Report.Manager reportManager = new MachineLearning.NeuralNetwork.Report.Manager();

            NeuralNetworkObj neuralNetworkObj = numberRecognizerNeuralNetwork.GetNeuralNetwork();

            var prepareData = this.GetPrepareData(neuralNetworkObj.GetLastLayer().GetCountNeurons());
            int countEpoch  = Convert.ToInt16(educateNetworkNumericUpDown.Value);

            for (int epoch = 0; epoch < countEpoch; epoch++)
            {
                reportManager.AddDataBeforeEducate(neuralNetworkObj, prepareData);

                for (int iteration = 0; iteration < COUNT_ITERATION; iteration++)
                {
                    foreach (var entity in prepareData)
                    {
                        double[] inputVector          = entity.Key;
                        double[] expectedResultVector = entity.Value;

                        neuralNetworkObj = uncertaintyPropagationMethod.GetTaughtNeuralNetwork(
                            numberRecognizerNeuralNetwork.GetNeuralNetwork(),
                            inputVector,
                            expectedResultVector
                            );
                    }
                }

                educateNetworkProgressBar.Value = Convert.ToInt16((epoch + 1.0) / countEpoch * 100);

                reportManager.AddDataAfterEducate(neuralNetworkObj, prepareData);
                reportManager.SaveReport(neuralNetworkObj);

                neuralNetworkObj.EpochPassed();
            }

            numberRecognizerNeuralNetwork.UpdateNeuralNetwork(neuralNetworkObj);
        }
Пример #3
0
        private void generateButton_Click(object sender, EventArgs e)
        {
            //todo validation

            string name        = newNetworkNameTextBox.Text;
            int    countLayers = Convert.ToInt16(layersCountTextBox.Text);

            int[] neuronsInLayer = new int[countLayers];

            for (int layerId = 0; layerId < countLayers; layerId++)
            {
                neuronsInLayer[layerId] = Convert.ToInt16(
                    Interaction.InputBox($"Input count neuron in layer {layerId}?", "Configuration layers", "")
                    );
            }

            NumberRecognizerNeuralNetwork numberRecognizerNeuralNetwork = new NumberRecognizerNeuralNetwork(name, neuronsInLayer, IMG_HEIGHT, IMG_WIDHT);

            numberRecognizerNeuralNetwork.GenerateRandom();

            this.LoadNetworks();
        }