Пример #1
0
		public override void Step(TestSettings settings)
		{
			Manifold manifold;
			Collision.CollidePolygons(out manifold, m_polygonA, m_transformA, m_polygonB, m_transformB);

			WorldManifold worldManifold = new WorldManifold();
			worldManifold.Initialize(manifold, m_transformA, m_polygonA.m_radius, m_transformB, m_polygonB.m_radius);

			m_debugDraw.DrawString("point count = {0}", manifold.points.Count());
			

			{
				Color color = Color.FromArgb(225, 225, 225);
				Vec2[] v = new Vec2[Settings._maxPolygonVertices];
				for (int i = 0; i < m_polygonA.m_count; ++i)
				{
					v[i] = Utilities.Mul(m_transformA, m_polygonA.m_vertices[i]);
				}
				m_debugDraw.DrawPolygon(v, m_polygonA.m_count, color);

				for (int i = 0; i < m_polygonB.m_count; ++i)
				{
					v[i] = Utilities.Mul(m_transformB, m_polygonB.m_vertices[i]);
				}
				m_debugDraw.DrawPolygon(v, m_polygonB.m_count, color);
			}

			for (int i = 0; i < manifold.points.Count(); ++i)
			{
				m_debugDraw.DrawPoint(worldManifold.points[i], 4.0f, Color.FromArgb(225, 75, 75));
			}
		}
Пример #2
0
		public void InitializeVelocityConstraints() {
			for (int i = 0; i < m_contacts.Count(); ++i) {
				ContactVelocityConstraint vc = m_velocityConstraints[i];
				ContactPositionConstraint pc = m_positionConstraints[i];

				float radiusA = pc.radiusA;
				float radiusB = pc.radiusB;
				Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

				int indexA = vc.indexA;
				int indexB = vc.indexB;

				float mA = vc.invMassA;
				float mB = vc.invMassB;
				float iA = vc.invIA;
				float iB = vc.invIB;
				Vec2 localCenterA = pc.localCenterA;
				Vec2 localCenterB = pc.localCenterB;

				Vec2 cA = m_positions[indexA].c;
				float aA = m_positions[indexA].a;
				Vec2 vA = m_velocities[indexA].v;
				float wA = m_velocities[indexA].w;

				Vec2 cB = m_positions[indexB].c;
				float aB = m_positions[indexB].a;
				Vec2 vB = m_velocities[indexB].v;
				float wB = m_velocities[indexB].w;

				Utilities.Assert(manifold.points.Count() > 0);

				Transform xfA = new Transform();
				Transform xfB = new Transform();
				xfA.q.Set(aA);
				xfB.q.Set(aB);
				xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
				xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

				WorldManifold worldManifold = new WorldManifold();
				worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);

				vc.normal = worldManifold.normal;

				int pointCount = vc.points.Count;
				for (int j = 0; j < pointCount; ++j) {
					VelocityConstraintPoint vcp = vc.points[j];

					vcp.rA = worldManifold.points[j] - cA;
					vcp.rB = worldManifold.points[j] - cB;

					float rnA = Utilities.Cross(vcp.rA, vc.normal);
					float rnB = Utilities.Cross(vcp.rB, vc.normal);

					float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

					vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

					Vec2 tangent = Utilities.Cross(vc.normal, 1.0f);

					float rtA = Utilities.Cross(vcp.rA, tangent);
					float rtB = Utilities.Cross(vcp.rB, tangent);

					float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

					vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

					// Setup a velocity bias for restitution.
					vcp.velocityBias = 0.0f;
					float vRel = Utilities.Dot(vc.normal, vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA));
					if (vRel < -Settings._velocityThreshold) {
						vcp.velocityBias = -vc.restitution * vRel;
					}
				}

				// If we have two points, then prepare the block solver.
				if (vc.points.Count() == 2) {
					VelocityConstraintPoint vcp1 = vc.points[0];
					VelocityConstraintPoint vcp2 = vc.points[1];

					float rn1A = Utilities.Cross(vcp1.rA, vc.normal);
					float rn1B = Utilities.Cross(vcp1.rB, vc.normal);
					float rn2A = Utilities.Cross(vcp2.rA, vc.normal);
					float rn2B = Utilities.Cross(vcp2.rB, vc.normal);

					float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
					float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
					float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

					// Ensure a reasonable condition number.
					const float k_maxConditionNumber = 1000.0f;
					if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12)) {
						// K is safe to invert.
						vc.K.ex.Set(k11, k12);
						vc.K.ey.Set(k12, k22);
						vc.normalMass = vc.K.GetInverse();
					} else {
						// The constraints are redundant, just use one.
						// TODO_ERIN use deepest?
						vc.points.Clear();
						vc.points.Add(new VelocityConstraintPoint());
					}
				}
			}
		}
Пример #3
0
        public void InitializeVelocityConstraints()
        {
            for (int i = 0; i < m_contacts.Count(); ++i)
            {
                ContactVelocityConstraint vc = m_velocityConstraints[i];
                ContactPositionConstraint pc = m_positionConstraints[i];

                float    radiusA  = pc.radiusA;
                float    radiusB  = pc.radiusB;
                Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

                int indexA = vc.indexA;
                int indexB = vc.indexB;

                float mA           = vc.invMassA;
                float mB           = vc.invMassB;
                float iA           = vc.invIA;
                float iB           = vc.invIB;
                Vec2  localCenterA = pc.localCenterA;
                Vec2  localCenterB = pc.localCenterB;

                Vec2  cA = m_positions[indexA].c;
                float aA = m_positions[indexA].a;
                Vec2  vA = m_velocities[indexA].v;
                float wA = m_velocities[indexA].w;

                Vec2  cB = m_positions[indexB].c;
                float aB = m_positions[indexB].a;
                Vec2  vB = m_velocities[indexB].v;
                float wB = m_velocities[indexB].w;

                Utilities.Assert(manifold.points.Count() > 0);

                Transform xfA = new Transform();
                Transform xfB = new Transform();
                xfA.q.Set(aA);
                xfB.q.Set(aB);
                xfA.p = cA - Utilities.Mul(xfA.q, localCenterA);
                xfB.p = cB - Utilities.Mul(xfB.q, localCenterB);

                WorldManifold worldManifold = new WorldManifold();
                worldManifold.Initialize(manifold, xfA, radiusA, xfB, radiusB);

                vc.normal = worldManifold.normal;

                int pointCount = vc.points.Count;
                for (int j = 0; j < pointCount; ++j)
                {
                    VelocityConstraintPoint vcp = vc.points[j];

                    vcp.rA = worldManifold.points[j] - cA;
                    vcp.rB = worldManifold.points[j] - cB;

                    float rnA = Utilities.Cross(vcp.rA, vc.normal);
                    float rnB = Utilities.Cross(vcp.rB, vc.normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    Vec2 tangent = Utilities.Cross(vc.normal, 1.0f);

                    float rtA = Utilities.Cross(vcp.rA, tangent);
                    float rtB = Utilities.Cross(vcp.rB, tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.velocityBias = 0.0f;
                    float vRel = Utilities.Dot(vc.normal, vB + Utilities.Cross(wB, vcp.rB) - vA - Utilities.Cross(wA, vcp.rA));
                    if (vRel < -Settings._velocityThreshold)
                    {
                        vcp.velocityBias = -vc.restitution * vRel;
                    }
                }

                // If we have two points, then prepare the block solver.
                if (vc.points.Count() == 2)
                {
                    VelocityConstraintPoint vcp1 = vc.points[0];
                    VelocityConstraintPoint vcp2 = vc.points[1];

                    float rn1A = Utilities.Cross(vcp1.rA, vc.normal);
                    float rn1B = Utilities.Cross(vcp1.rB, vc.normal);
                    float rn2A = Utilities.Cross(vcp2.rA, vc.normal);
                    float rn2B = Utilities.Cross(vcp2.rB, vc.normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    const float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.ex.Set(k11, k12);
                        vc.K.ey.Set(k12, k22);
                        vc.normalMass = vc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.points.Clear();
                        vc.points.Add(new VelocityConstraintPoint());
                    }
                }
            }
        }