public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, ref DistanceInput input, Shape shapeA, Shape shapeB) { cache = new SimplexCache(); ++b2_gjkCalls; XForm transformA = input.transformA; XForm transformB = input.transformB; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, shapeA, ref transformA, shapeB, ref transformB); // Get simplex vertices as an array. int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3<int> saveA = new FixedArray3<int>(); FixedArray3<int> saveB = new FixedArray3<int>(); int saveCount = 0; Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.LengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. saveCount = simplex._count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex._v[i].indexA; saveB[i] = simplex._v[i].indexB; } switch (simplex._count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex._count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.b2_FLT_EPSILON * Settings.b2_FLT_EPSILON) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex._v[simplex._count]; vertex.indexA = shapeA.GetSupport(MathUtils.MultiplyT(ref transformA.R, -d)); vertex.wA = MathUtils.Multiply(ref transformA, shapeA.GetVertex(vertex.indexA)); //Vector2 wBLocal; vertex.indexB = shapeB.GetSupport(MathUtils.MultiplyT(ref transformB.R, d)); vertex.wB = MathUtils.Multiply(ref transformB, shapeB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA; simplex._v[simplex._count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++b2_gjkIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.indexA == saveA[i] && vertex.indexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex._count; } b2_gjkMaxIters = Math.Max(b2_gjkMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.pointA, out output.pointB); output.distance = (output.pointA - output.pointB).Length(); output.iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.useRadii) { float rA = shapeA._radius; float rB = shapeB._radius; if (output.distance > rA + rB && output.distance > Settings.b2_FLT_EPSILON) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.distance -= rA + rB; Vector2 normal = output.pointB - output.pointA; normal.Normalize(); output.pointA += rA * normal; output.pointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.pointA + output.pointB); output.pointA = p; output.pointB = p; output.distance = 0.0f; } } }
public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, ref DistanceInput input, Shape shapeA, Shape shapeB) { cache = new SimplexCache(); ++b2_gjkCalls; XForm transformA = input.transformA; XForm transformB = input.transformB; // Initialize the simplex. Simplex simplex = new Simplex(); simplex.ReadCache(ref cache, shapeA, ref transformA, shapeB, ref transformB); // Get simplex vertices as an array. int k_maxIters = 20; // These store the vertices of the last simplex so that we // can check for duplicates and prevent cycling. FixedArray3 <int> saveA = new FixedArray3 <int>(); FixedArray3 <int> saveB = new FixedArray3 <int>(); int saveCount = 0; Vector2 closestPoint = simplex.GetClosestPoint(); float distanceSqr1 = closestPoint.LengthSquared(); float distanceSqr2 = distanceSqr1; // Main iteration loop. int iter = 0; while (iter < k_maxIters) { // Copy simplex so we can identify duplicates. saveCount = simplex._count; for (int i = 0; i < saveCount; ++i) { saveA[i] = simplex._v[i].indexA; saveB[i] = simplex._v[i].indexB; } switch (simplex._count) { case 1: break; case 2: simplex.Solve2(); break; case 3: simplex.Solve3(); break; default: Debug.Assert(false); break; } // If we have 3 points, then the origin is in the corresponding triangle. if (simplex._count == 3) { break; } // Compute closest point. Vector2 p = simplex.GetClosestPoint(); distanceSqr2 = p.LengthSquared(); // Ensure progress if (distanceSqr2 >= distanceSqr1) { //break; } distanceSqr1 = distanceSqr2; // Get search direction. Vector2 d = simplex.GetSearchDirection(); // Ensure the search direction is numerically fit. if (d.LengthSquared() < Settings.b2_FLT_EPSILON * Settings.b2_FLT_EPSILON) { // The origin is probably contained by a line segment // or triangle. Thus the shapes are overlapped. // We can't return zero here even though there may be overlap. // In case the simplex is a point, segment, or triangle it is difficult // to determine if the origin is contained in the CSO or very close to it. break; } // Compute a tentative new simplex vertex using support points. SimplexVertex vertex = simplex._v[simplex._count]; vertex.indexA = shapeA.GetSupport(MathUtils.MultiplyT(ref transformA.R, -d)); vertex.wA = MathUtils.Multiply(ref transformA, shapeA.GetVertex(vertex.indexA)); //Vector2 wBLocal; vertex.indexB = shapeB.GetSupport(MathUtils.MultiplyT(ref transformB.R, d)); vertex.wB = MathUtils.Multiply(ref transformB, shapeB.GetVertex(vertex.indexB)); vertex.w = vertex.wB - vertex.wA; simplex._v[simplex._count] = vertex; // Iteration count is equated to the number of support point calls. ++iter; ++b2_gjkIters; // Check for duplicate support points. This is the main termination criteria. bool duplicate = false; for (int i = 0; i < saveCount; ++i) { if (vertex.indexA == saveA[i] && vertex.indexB == saveB[i]) { duplicate = true; break; } } // If we found a duplicate support point we must exit to avoid cycling. if (duplicate) { break; } // New vertex is ok and needed. ++simplex._count; } b2_gjkMaxIters = Math.Max(b2_gjkMaxIters, iter); // Prepare output. simplex.GetWitnessPoints(out output.pointA, out output.pointB); output.distance = (output.pointA - output.pointB).Length(); output.iterations = iter; // Cache the simplex. simplex.WriteCache(ref cache); // Apply radii if requested. if (input.useRadii) { float rA = shapeA._radius; float rB = shapeB._radius; if (output.distance > rA + rB && output.distance > Settings.b2_FLT_EPSILON) { // Shapes are still no overlapped. // Move the witness points to the outer surface. output.distance -= rA + rB; Vector2 normal = output.pointB - output.pointA; normal.Normalize(); output.pointA += rA * normal; output.pointB -= rB * normal; } else { // Shapes are overlapped when radii are considered. // Move the witness points to the middle. Vector2 p = 0.5f * (output.pointA + output.pointB); output.pointA = p; output.pointB = p; output.distance = 0.0f; } } }