Пример #1
0
        static public b2ContactPositionConstraint Create()
        {
            var cvc = new b2ContactPositionConstraint();

            cvc.Defaults();
            return(cvc);
        }
Пример #2
0
            public b2PositionSolverManifold(b2ContactPositionConstraint pc, ref b2Transform xfA, ref b2Transform xfB, int index)
            {
                Debug.Assert(pc.pointCount > 0);

                switch (pc.type)
                {
                case b2ManifoldType.e_circles:
                {
                    b2Vec2 pointA = b2Math.b2Mul(xfA, pc.localPoint);
                    b2Vec2 pointB = b2Math.b2Mul(xfB, pc.localPoints[0]);
                    normal = pointB - pointA;
                    normal.Normalize();
                    point      = 0.5f * (pointA + pointB);
                    separation = b2Math.b2Dot(pointB - pointA, normal) - pc.radiusA - pc.radiusB;
                }
                break;

                case b2ManifoldType.e_faceA:
                {
                    normal = b2Math.b2Mul(xfA.q, pc.localNormal);
                    b2Vec2 planePoint = b2Math.b2Mul(xfA, pc.localPoint);

                    b2Vec2 clipPoint = b2Math.b2Mul(xfB, pc.localPoints[index]);
                    b2Vec2 rCP       = clipPoint - planePoint;
                    separation = b2Math.b2Dot(ref rCP, ref normal) - pc.radiusA - pc.radiusB;
                    point      = clipPoint;
                }
                break;

                case b2ManifoldType.e_faceB:
                {
                    normal = b2Math.b2Mul(xfB.q, pc.localNormal);
                    b2Vec2 planePoint = b2Math.b2Mul(xfB, pc.localPoint);

                    b2Vec2 clipPoint = b2Math.b2Mul(xfA, pc.localPoints[index]);
                    b2Vec2 rCP       = clipPoint - planePoint;
                    separation = b2Math.b2Dot(ref rCP, ref normal) - pc.radiusA - pc.radiusB;
                    point      = clipPoint;

                    // Ensure normal points from A to B
                    normal = -normal;
                }
                break;
                }
            }
Пример #3
0
            public b2PositionSolverManifold(ref b2ContactPositionConstraint pc, ref b2Transform xfA, ref b2Transform xfB, int index)
            {
                Debug.Assert(pc.pointCount > 0);

                switch (pc.type)
                {
                    case b2ManifoldType.e_circles:
                        {
                            b2Vec2 pointA = b2Math.b2Mul(xfA, pc.localPoint);
                            b2Vec2 pointB = b2Math.b2Mul(xfB, pc.localPoints[0]);
                            normal = pointB - pointA;
                            normal.Normalize();
                            point = 0.5f * (pointA + pointB);
                            separation = b2Math.b2Dot(pointB - pointA, normal) - pc.radiusA - pc.radiusB;
                        }
                        break;

                    case b2ManifoldType.e_faceA:
                        {
                            normal = b2Math.b2Mul(xfA.q, pc.localNormal);
                            b2Vec2 planePoint = b2Math.b2Mul(xfA, pc.localPoint);

                            b2Vec2 clipPoint = b2Math.b2Mul(xfB, pc.localPoints[index]);
                            separation = b2Math.b2Dot(clipPoint - planePoint, normal) - pc.radiusA - pc.radiusB;
                            point = clipPoint;
                        }
                        break;

                    case b2ManifoldType.e_faceB:
                        {
                            normal = b2Math.b2Mul(xfB.q, pc.localNormal);
                            b2Vec2 planePoint = b2Math.b2Mul(xfB, pc.localPoint);

                            b2Vec2 clipPoint = b2Math.b2Mul(xfA, pc.localPoints[index]);
                            separation = b2Math.b2Dot(clipPoint - planePoint, normal) - pc.radiusA - pc.radiusB;
                            point = clipPoint;

                            // Ensure normal points from A to B
                            normal = -normal;
                        }
                        break;
                }
            }
Пример #4
0
 public static b2ContactPositionConstraint Create()
 {
     var cvc = new b2ContactPositionConstraint();
     cvc.Defaults();
     return cvc;
 }
Пример #5
0
        // Sequential position solver for position constraints.
        public bool SolveTOIPositionConstraints(int toiIndexA, int toiIndexB)
        {
            float minSeparation = 0.0f;

            for (int i = 0; i < m_count; ++i)
            {
                b2ContactPositionConstraint pc = m_positionConstraints[i];

                int    indexA       = pc.indexA;
                int    indexB       = pc.indexB;
                b2Vec2 localCenterA = pc.localCenterA;
                b2Vec2 localCenterB = pc.localCenterB;
                int    pointCount   = pc.pointCount;

                float mA = 0.0f;
                float iA = 0.0f;
                if (indexA == toiIndexA || indexA == toiIndexB)
                {
                    mA = pc.invMassA;
                    iA = pc.invIA;
                }

                float mB = pc.invMassB;
                float iB = pc.invIB;
                if (indexB == toiIndexA || indexB == toiIndexB)
                {
                    mB = pc.invMassB;
                    iB = pc.invIB;
                }

                b2Vec2 cA = m_positions[indexA].c;
                float  aA = m_positions[indexA].a;

                b2Vec2 cB = m_positions[indexB].c;
                float  aB = m_positions[indexB].a;

                // Solve normal constraints
                for (int j = 0; j < pointCount; ++j)
                {
                    b2Transform xfA = b2Transform.Identity, xfB = b2Transform.Identity;
                    xfA.q.Set(aA);
                    xfB.q.Set(aB);
                    xfA.p = cA - b2Math.b2Mul(xfA.q, localCenterA);
                    xfB.p = cB - b2Math.b2Mul(xfB.q, localCenterB);

                    b2PositionSolverManifold psm = new b2PositionSolverManifold(pc, ref xfA, ref xfB, j);
                    b2Vec2 normal = psm.normal;

                    b2Vec2 point = psm.point;
                    float  separation            = psm.separation;

                    b2Vec2 rA = point - cA;
                    b2Vec2 rB = point - cB;

                    // Track max constraint error.
                    minSeparation = Math.Min(minSeparation, separation);

                    // Prevent large corrections and allow slop.
                    float C = b2Math.b2Clamp(b2Settings.b2_toiBaugarte * (separation + b2Settings.b2_linearSlop), -b2Settings.b2_maxLinearCorrection, 0.0f);

                    // Compute the effective mass.
                    float rnA = b2Math.b2Cross(ref rA, ref normal);
                    float rnB = b2Math.b2Cross(ref rB, ref normal);
                    float K   = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    // Compute normal impulse
                    float impulse = K > 0.0f ? -C / K : 0.0f;

                    b2Vec2 P = impulse * normal;

                    cA -= mA * P;
                    aA -= iA * b2Math.b2Cross(rA, P);

                    cB += mB * P;
                    aB += iB * b2Math.b2Cross(rB, P);
                }

                m_positions[indexA].c = cA;
                m_positions[indexA].a = aA;

                m_positions[indexB].c = cB;
                m_positions[indexB].a = aB;

                //m_positionConstraints[i] = pc;
            }

            // We can't expect minSpeparation >= -b2_linearSlop because we don't
            // push the separation above -b2_linearSlop.
            return(minSeparation >= -1.5f * b2Settings.b2_linearSlop);
        }
Пример #6
0
        // Initialize position dependent portions of the velocity constraints.
        public virtual void InitializeVelocityConstraints()
        {
            for (int i = 0; i < m_count; ++i)
            {
                b2ContactVelocityConstraint vc = m_velocityConstraints[i];
                b2ContactPositionConstraint pc = m_positionConstraints[i];

                float      radiusA  = pc.radiusA;
                float      radiusB  = pc.radiusB;
                b2Manifold manifold = m_contacts[vc.contactIndex].GetManifold();

                int indexA = vc.indexA;
                int indexB = vc.indexB;

                float  mA           = vc.invMassA;
                float  mB           = vc.invMassB;
                float  iA           = vc.invIA;
                float  iB           = vc.invIB;
                b2Vec2 localCenterA = pc.localCenterA;
                b2Vec2 localCenterB = pc.localCenterB;

                b2Vec2 cA = m_positions[indexA].c;
                float  aA = m_positions[indexA].a;
                b2Vec2 vA = m_velocities[indexA].v;
                float  wA = m_velocities[indexA].w;

                b2Vec2 cB = m_positions[indexB].c;
                float  aB = m_positions[indexB].a;
                b2Vec2 vB = m_velocities[indexB].v;
                float  wB = m_velocities[indexB].w;

                Debug.Assert(manifold.pointCount > 0);

                b2Transform xfA = b2Transform.Identity, xfB = b2Transform.Identity;
                xfA.q.Set(aA);
                xfB.q.Set(aB);
                xfA.p = cA - b2Math.b2Mul(ref xfA.q, ref localCenterA);
                xfB.p = cB - b2Math.b2Mul(ref xfB.q, ref localCenterB);

                b2WorldManifold worldManifold = new b2WorldManifold();
                worldManifold.Initialize(ref manifold, xfA, radiusA, xfB, radiusB);

                vc.normal = worldManifold.normal;

                int pointCount = vc.pointCount;
                for (int j = 0; j < pointCount; ++j)
                {
                    b2VelocityConstraintPoint vcp = vc.points[j];

                    vcp.rA = worldManifold.points[j] - cA;
                    vcp.rB = worldManifold.points[j] - cB;

                    float rnA = b2Math.b2Cross(ref vcp.rA, ref vc.normal);
                    float rnB = b2Math.b2Cross(ref vcp.rB, ref vc.normal);

                    float kNormal = mA + mB + iA * rnA * rnA + iB * rnB * rnB;

                    vcp.normalMass = kNormal > 0.0f ? 1.0f / kNormal : 0.0f;

                    b2Vec2 tangent = vc.normal.UnitCross(); //  b2Math.b2Cross(vc.normal, 1.0f);

                    float rtA = b2Math.b2Cross(ref vcp.rA, ref tangent);
                    float rtB = b2Math.b2Cross(ref vcp.rB, ref tangent);

                    float kTangent = mA + mB + iA * rtA * rtA + iB * rtB * rtB;

                    vcp.tangentMass = kTangent > 0.0f ? 1.0f / kTangent : 0.0f;

                    // Setup a velocity bias for restitution.
                    vcp.velocityBias = 0.0f;
                    float vRel = b2Math.b2Dot(vc.normal, vB + b2Math.b2Cross(wB, ref vcp.rB) - vA - b2Math.b2Cross(wA, ref vcp.rA));
                    if (vRel < -b2Settings.b2_velocityThreshold)
                    {
                        vcp.velocityBias = -vc.restitution * vRel;
                    }

                    //vc.points[j] = vcp;
                }

                // If we have two points, then prepare the block solver.
                if (vc.pointCount == 2)
                {
                    b2VelocityConstraintPoint vcp1 = vc.points[0];
                    b2VelocityConstraintPoint vcp2 = vc.points[1];

                    float rn1A = b2Math.b2Cross(ref vcp1.rA, ref vc.normal);
                    float rn1B = b2Math.b2Cross(ref vcp1.rB, ref vc.normal);
                    float rn2A = b2Math.b2Cross(ref vcp2.rA, ref vc.normal);
                    float rn2B = b2Math.b2Cross(ref vcp2.rB, ref vc.normal);

                    float k11 = mA + mB + iA * rn1A * rn1A + iB * rn1B * rn1B;
                    float k22 = mA + mB + iA * rn2A * rn2A + iB * rn2B * rn2B;
                    float k12 = mA + mB + iA * rn1A * rn2A + iB * rn1B * rn2B;

                    // Ensure a reasonable condition number.
                    float k_maxConditionNumber = 1000.0f;
                    if (k11 * k11 < k_maxConditionNumber * (k11 * k22 - k12 * k12))
                    {
                        // K is safe to invert.
                        vc.K.ex.Set(k11, k12);
                        vc.K.ey.Set(k12, k22);
                        vc.normalMass = vc.K.GetInverse();
                    }
                    else
                    {
                        // The constraints are redundant, just use one.
                        // TODO_ERIN use deepest?
                        vc.pointCount = 1;
                    }
                }

                //m_positionConstraints[i] = pc;
                //m_velocityConstraints[i] = vc;
            }
        }
Пример #7
0
        public b2ContactSolver(b2ContactSolverDef def)
        {
            m_step  = def.step;
            m_count = def.count;
            m_positionConstraints = new b2ContactPositionConstraint[m_count];
            for (int pc = 0; pc < m_count; pc++)
            {
                m_positionConstraints[pc] = b2ContactPositionConstraint.Create();
            }

            m_velocityConstraints = new b2ContactVelocityConstraint[m_count];
            for (int vc = 0; vc < m_count; vc++)
            {
                m_velocityConstraints[vc] = b2ContactVelocityConstraint.Create();
            }

            m_positions  = def.positions;
            m_velocities = def.velocities;
            m_contacts   = def.contacts;

            // Initialize position independent portions of the constraints.
            for (int i = 0; i < m_count; ++i)
            {
                b2Contact contact = m_contacts[i];

                b2Fixture  fixtureA = contact.FixtureA;
                b2Fixture  fixtureB = contact.FixtureB;
                b2Shape    shapeA   = fixtureA.Shape;
                b2Shape    shapeB   = fixtureB.Shape;
                float      radiusA  = shapeA.Radius;
                float      radiusB  = shapeB.Radius;
                b2Body     bodyA    = fixtureA.Body;
                b2Body     bodyB    = fixtureB.Body;
                b2Manifold manifold = contact.GetManifold();

                int pointCount = manifold.pointCount;
                Debug.Assert(pointCount > 0);

                b2ContactVelocityConstraint vc = m_velocityConstraints[i];
                vc.friction     = contact.Friction;
                vc.restitution  = contact.Restitution;
                vc.indexA       = bodyA.IslandIndex;
                vc.indexB       = bodyB.IslandIndex;
                vc.invMassA     = bodyA.InvertedMass;
                vc.invMassB     = bodyB.InvertedMass;
                vc.invIA        = bodyA.InvertedI;
                vc.invIB        = bodyB.InvertedI;
                vc.contactIndex = i;
                vc.pointCount   = pointCount;
                vc.K.SetZero();
                vc.normalMass.SetZero();

                b2ContactPositionConstraint pc = m_positionConstraints[i];
                pc.indexA       = bodyA.IslandIndex;
                pc.indexB       = bodyB.IslandIndex;
                pc.invMassA     = bodyA.InvertedMass;
                pc.invMassB     = bodyB.InvertedMass;
                pc.localCenterA = bodyA.Sweep.localCenter;
                pc.localCenterB = bodyB.Sweep.localCenter;
                pc.invIA        = bodyA.InvertedI;
                pc.invIB        = bodyB.InvertedI;
                pc.localNormal  = manifold.localNormal;
                pc.localPoint   = manifold.localPoint;
                pc.pointCount   = pointCount;
                pc.radiusA      = radiusA;
                pc.radiusB      = radiusB;
                pc.type         = manifold.type;

                for (int j = 0; j < pointCount; ++j)
                {
                    b2ManifoldPoint           cp  = manifold.points[j];
                    b2VelocityConstraintPoint vcp = vc.points[j];

                    if (m_step.warmStarting)
                    {
                        vcp.normalImpulse  = m_step.dtRatio * cp.normalImpulse;
                        vcp.tangentImpulse = m_step.dtRatio * cp.tangentImpulse;
                    }
                    else
                    {
                        vcp.normalImpulse  = 0.0f;
                        vcp.tangentImpulse = 0.0f;
                    }

                    vcp.rA.SetZero();
                    vcp.rB.SetZero();
                    vcp.normalMass   = 0.0f;
                    vcp.tangentMass  = 0.0f;
                    vcp.velocityBias = 0.0f;

                    pc.localPoints[j] = cp.localPoint;

                    //vc.points[j] = vcp;
                }

                //Put back the struct data since struct data is copied by value
                //m_positionConstraints[i] = pc;
                //m_velocityConstraints[i] = vc;
            }
        }