Пример #1
0
        public static void collecLines(OctreeNode node, out List <Point3D> vertList, out List <int> lineIndex)
        {
            vertList  = new List <Point3D>();
            lineIndex = new List <int>();

            if (node._children.Count == 0)
            {
                vertList.AddRange(node.nodeCellCuboid.cuboidPolyhedron.Vertices);
                int[] lines = { 0, 1, 2, 3, 0, 4, 5, 6, 7, 4, 5, 1, 2, 6, 7, 3 };
                lineIndex.AddRange(lines);
            }
            else
            {
                foreach (OctreeNode child in node._children)
                {
                    List <Point3D> verts;
                    List <int>     idx;
                    OctreeNodeProcess.collecLines(child, out verts, out idx);
                    if (verts.Count > 0)
                    {
                        int offset = vertList.Count;
                        vertList.AddRange(verts);
                        for (int i = 0; i < idx.Count; i++)
                        {
                            idx[i] += offset;                   // offset the indexes based ont the current count of the list
                        }
                        lineIndex.AddRange(idx);
                    }
                }
            }
        }
Пример #2
0
 public static bool collectCellIDs(OctreeNode node, out List <CellID64> collCellIDs, out List <int> collBorderFlag)
 {
     collCellIDs    = new List <CellID64>();
     collBorderFlag = new List <int>();
     if (node._children.Count == 0)
     {
         // No child in this node, return its cellID
         if (node._flag != PolyhedronIntersectEnum.Disjoint)
         {
             collCellIDs.Add(node.nodeCellID);
             collBorderFlag.Add(node._flag == PolyhedronIntersectEnum.Intersect ? 1 : 0);
         }
     }
     else
     {
         foreach (OctreeNode child in node._children)
         {
             List <CellID64> coll     = null;
             List <int>      collFlag = null;
             if (child._flag != PolyhedronIntersectEnum.Disjoint)
             {
                 OctreeNodeProcess.collectCellIDs(child, out coll, out collFlag);
                 if (coll.Count > 0)
                 {
                     collCellIDs.AddRange(coll);
                     collBorderFlag.AddRange(collFlag);
                 }
             }
         }
     }
     return(true);
 }
Пример #3
0
        /// <summary>
        /// Compute Octree for a Polyhedron
        /// </summary>
        /// <param name="elementID"></param>
        /// <param name="polyH"></param>
        /// <param name="forUserDict"></param>
        public void ComputeOctree(string elementID, Polyhedron polyH, bool forUserDict)
        {
            // Make sure ElementID string is 22 character long for correct encoding/decoding
            if (elementID.Length < 22)
            {
                elementID = elementID.PadLeft(22, '0');
            }

            ElementID eidNo = new ElementID(elementID);
            Tuple <UInt64, UInt64> elementIDNo = eidNo.ElementIDNo;

            OctreeNode theTree = new OctreeNode();

            // Do it in steps:
            // 1. Find the smallest containing cell based on the PolyH BB, it it to quickly eliminate the irrelevant cells very quickly
            theTree.nodeCellID = OctreeNodeProcess.getSmallestContainingCell(polyH);
            theTree._depth     = theTree.nodeCellID.Level;

            // 2. Perform subdivision using the BB first: quick division since there is no expensive intersection. It leaves all the leaves based on BB
            OctreeNodeProcess.ProcessBB(theTree, polyH.boundingBox);

            // 3. Evaluate each leaf nodes for further subdivision using the actual polyhedron (the original algorithm)
            OctreeNodeProcess.Process(theTree, polyH);

            List <CellID64> collCellID;
            List <int>      collBorderFlag;

            OctreeNodeProcess.collectCellIDs(theTree, out collCellID, out collBorderFlag);
            for (int i = 0; i < collCellID.Count; ++i)
            {
                if (forUserDict)
                {
                    insertDataToUserDict(elementIDNo, collCellID[i], collBorderFlag[i], false);
                }
                else
                {
                    //insertDataToDictDB(elementID, collCellID[i]);
                    insertDataToDict(elementIDNo, collCellID[i]);
                }
            }
        }
Пример #4
0
        /// <summary>
        /// Compute Octree for a Line Segment
        /// </summary>
        /// <param name="elementID"></param>
        /// <param name="lineS"></param>
        /// <param name="forUserDict"></param>
        public void ComputeOctree(string elementID, LineSegment3D lineS, bool forUserDict)
        {
            // Make sure ElementID string is 22 character long for correct encoding/decoding
            if (elementID.Length < 22)
            {
                elementID = elementID.PadLeft(22, '0');
            }

            ElementID eidNo = new ElementID(elementID);
            Tuple <UInt64, UInt64> elementIDNo = eidNo.ElementIDNo;

            OctreeNode theTree = new OctreeNode();

            // Add a step:
            // 1. Find the smallest containing cell based on the Face BB, it it to quickly eliminate the irrelevant cells very quickly
            theTree.nodeCellID = OctreeNodeProcess.getSmallestContainingCell(lineS);
            theTree._depth     = theTree.nodeCellID.Level;

            OctreeNodeProcess.Process(theTree, lineS);
            List <CellID64> collCellID;
            List <int>      collBorderFlag;

            OctreeNodeProcess.collectCellIDs(theTree, out collCellID, out collBorderFlag);
            for (int i = 0; i < collCellID.Count; ++i)
            {
                if (forUserDict)
                {
                    insertDataToUserDict(elementIDNo, collCellID[i], collBorderFlag[i], false);
                }
                else
                {
                    //insertDataToDictDB(elementID, collCellID[i]);
                    insertDataToDict(elementIDNo, collCellID[i]);
                }
            }
        }
Пример #5
0
        /// <summary>
        /// Process Octree for a line segment
        /// </summary>
        /// <param name="_polyH"></param>
        /// <param name="polyHF"></param>
        public static void Process(OctreeNode node, LineSegment3D lineSegment)
        {
            if (node._depth < Octree.MaxDepth)
            {
                int disjointCount = 0;

                OctreeNodeProcess.Split(node);
                List <int> childToRemove   = new List <int>();
                List <int> childToTraverse = new List <int>();

                for (int i = 0; i < node._children.Count; i++)
                {
                    OctreeNode childNode = node._children[i];
                    if (Polyhedron.intersect(childNode.nodeCellCuboid.cuboidPolyhedron, lineSegment))
                    {
                        childToTraverse.Add(i);
                        childNode._flag = PolyhedronIntersectEnum.Intersect;
                        childNode.nodeCellID.setBorderCell();
                        continue;
                    }

                    // If doesn't intersect (passes the check above), either it is fully contained, full contains or disjoint
                    // To optimize the operation, we will use a single sampling point instead of checking the entire polyhedron since a single point can tell if a polyhedron is inside the other one

                    // Fully contains check only valid if the parent is fully contains, if intersect, it should never be full contains
                    if (node._flag == PolyhedronIntersectEnum.FullyContains)
                    {
                        if (Polyhedron.insideCuboid(childNode.nodeCellCuboid.cuboidPolyhedron, lineSegment.startPoint))
                        {
                            // if polyH is entirely inside the cuboid, we will set this for further split (the same as intersection
                            childToTraverse.Add(i);       // We will remove the node if it is disjoint, otherwise it will continue splitting until the condition met
                            childNode._flag = PolyhedronIntersectEnum.FullyContains;
                            childNode.nodeCellID.setBorderCell();
                            continue;
                        }
                    }

                    // If the Line does not intersect the cuboid, or the cuboid does not fully contain the Line, it must be disjoint
                    childNode._flag = PolyhedronIntersectEnum.Disjoint;
                    disjointCount++;
                    continue;
                }

                if (disjointCount == 8)
                {
                    // All children are disjoint. Remove all children and set the node to Disjoint
                    node._children.Clear();
                    node._flag = PolyhedronIntersectEnum.Disjoint;
                    return;
                }

                if (childToTraverse.Count == 1)
                {
                    OctreeNodeProcess.Process(node._children[childToTraverse[0]], lineSegment);
                }
                else if (childToTraverse.Count > 1)
                {
                    Parallel.ForEach(childToTraverse, i => OctreeNodeProcess.Process(node._children[i], lineSegment));
                }

                // If there is any disjoint, we need to keep this node as it is. This should be done after we processed all the children to be traversed!!
                if (disjointCount > 0 && disjointCount < 8)
                {
                    return;
                }

                int countGrandChildren = 0;
                // If there is no disjoint, we need to check whether all children are terminal (i.e. child._children.Count == 0)
                foreach (OctreeNode child in node._children)
                {
                    countGrandChildren += child._children.Count;
                }

                // All children are terminal and no disjoint (by implication of previous steps). Remove children
                if (countGrandChildren == 0)
                {
                    node._children.Clear();
                    node._flag = PolyhedronIntersectEnum.IntersectOrInside;
                    return;
                }
            }
            else
            {
                // at _depth == Octree.MaxDepth there is nothing else to do since the test has been done at the parent level and when entering this stage, the test has determined
                // that the cell is intersected with the polyH
            }

            return;
        }
Пример #6
0
        public static void Process(OctreeNode node, Polyhedron _polyH, List <Face3D> polyHF)
        {
            // 3rd step. Subdivide the cells collected by the step 2 and operate on them with the actual polyhedron to get the detail

            if (node._depth < Octree.MaxDepth)
            {
                int disjointCount = 0;
                int insideCount   = 0;

                Split(node);
                List <int> childToRemove   = new List <int>();
                List <int> childToTraverse = new List <int>();

                List <Face3D> faceList;
                faceList = Face3D.exclFacesOutsideOfBound(polyHF, node.nodeCellCuboid.cuboidPolyhedron.boundingBox, 0x111);

                if (faceList.Count == 0)
                {
                    // No face inside this cuboid left, no intersection nor completely enclosing the polyH.
                    node._flag = PolyhedronIntersectEnum.Disjoint;
                    node._children.Clear();
                    return;
                }

                for (int i = 0; i < node._children.Count; i++)
                {
                    OctreeNode childNode = node._children[i];
                    //PolyhedronIntersectEnum intS = childNode.Process(polyH);
                    if (Polyhedron.intersect(childNode.nodeCellCuboid.cuboidPolyhedron, faceList))
                    {
                        childToTraverse.Add(i);
                        childNode._flag = PolyhedronIntersectEnum.Intersect;
                        childNode.nodeCellID.setBorderCell();
#if (DBG_OCTREE)
                        if (childNode._depth >= _dbgDepth)
                        {
                            BIMRLCommon         refCommon = new BIMRLCommon();
                            string              dbgFile   = "c:\\temp\\octree\\" + childNode.nodeCellID.ToString() + " - intersect polyH.x3d";
                            BIMRLExportSDOToX3D x3d       = new BIMRLExportSDOToX3D(refCommon, dbgFile);
                            x3d.drawCellInX3d(childNode.nodeCellID.ToString());     // draw the cell
                            x3d.exportFacesToX3D(faceList);
                            x3d.endExportToX3D();
                        }
#endif
                        continue;
                    }

                    // If doesn't intersect (passes the check above), either it is fully contained, full contains or disjoint
                    // To optimize the operation, we will use a single sampling point instead of checking the entire polyhedron since a single point can tell if a polyhedron is inside the other one
                    //if (Polyhedron.inside(childNode.nodeCellCuboid.cuboidPolyhedron, polyH))

                    //// No need to check this since the previous step (no 1) would have removed the fullycontaining cells

                    // Fully contains check only valid if the parent is fully contains, if intersect, it should never be full contains
                    //if (node._flag == PolyhedronIntersectEnum.FullyContains)
                    //{
                    //    if (Polyhedron.insideCuboid(childNode.nodeCellCuboid.cuboidPolyhedron, faceList[0].vertices[0]))
                    //    {
                    //        // if polyH is entirely inside the cuboid, we will set this for further split (the same as intersection
                    //        childToTraverse.Add(i);       // We will remove the node if it is disjoint, otherwise it will continue splitting until the condition met
                    //        childNode._flag = PolyhedronIntersectEnum.FullyContains;
                    //        childNode.nodeCellID.setBorderCell();
                    //        continue;
                    //    }
                    //}

                    //if (Polyhedron.inside(polyH, childNode.nodeCellCuboid.cuboidPolyhedron))
                    if (Polyhedron.inside(_polyH, childNode.nodeCellCuboid.cuboidPolyhedron.Vertices[3]))
                    {
                        childNode._flag = PolyhedronIntersectEnum.Inside;
                        insideCount++;
#if (DBG_OCTREE)
                        if (childNode._depth >= _dbgDepth)
                        {
                            BIMRLCommon         refCommon = new BIMRLCommon();
                            string              dbgFile   = "c:\\temp\\octree\\" + childNode.nodeCellID.ToString() + " - inside polyH.x3d";
                            BIMRLExportSDOToX3D x3d       = new BIMRLExportSDOToX3D(refCommon, dbgFile);
                            x3d.drawCellInX3d(childNode.nodeCellID.ToString());     // draw the cell
                            x3d.exportFacesToX3D(_polyH.Faces);
                            x3d.endExportToX3D();
                        }
#endif
                        continue;
                    }

                    // If the 2 polyH do not intersect, the cuboid does not fully contain the polyH, nor the cuboid is fully inside the polyH, it must be disjoint
                    childNode._flag = PolyhedronIntersectEnum.Disjoint;
                    disjointCount++;
#if (DBG_OCTREE)
                    if (childNode._depth >= _dbgDepth)
                    {
                        BIMRLCommon         refCommon = new BIMRLCommon();
                        string              dbgFile   = "c:\\temp\\octree\\" + childNode.nodeCellID.ToString() + " - disjoint polyH.x3d";
                        BIMRLExportSDOToX3D x3d       = new BIMRLExportSDOToX3D(refCommon, dbgFile);
                        x3d.drawCellInX3d(childNode.nodeCellID.ToString());     // draw the cell
                        x3d.exportFacesToX3D(_polyH.Faces);
                        x3d.endExportToX3D();
                    }
#endif
                    continue;

                    // else: the cuboid is completely inside the polyH, keep
                }

                if (disjointCount == 8)
                {
                    // All children are disjoint. Remove all children and set the node to Disjoint
                    node._children.Clear();
                    node._flag = PolyhedronIntersectEnum.Disjoint;
                    return;
                }

                if (insideCount == 8)
                {
                    // All children are inside. Remove all children and set the node to Inside
                    node._children.Clear();
                    node._flag = PolyhedronIntersectEnum.Inside;
                    return;
                }


                if (childToTraverse.Count == 1)
                {
                    OctreeNodeProcess.Process(node._children[childToTraverse[0]], _polyH, faceList);
                }
                else if (childToTraverse.Count > 1)
                {
#if (DEBUG_NOPARALLEL)
                    // Non - parallel option for easier debugging
                    foreach (int i in childToTraverse)
                    {
                        OctreeNodeProcess.Process(node._children[i], _polyH, faceList);
                    }
#else
                    ParallelOptions po = new ParallelOptions();
                    po.MaxDegreeOfParallelism = 8;

                    Parallel.ForEach(childToTraverse, po, i => OctreeNodeProcess.Process(node._children[i], _polyH, faceList));
#endif
                }
                // If there is any disjoint, we need to keep this node as it is. This should be done after we processed all the children to be traversed!!
                if (disjointCount > 0 && disjointCount < 8)
                {
                    return;
                }

                int countGrandChildren = 0;
                // If there is no disjoint, we need to check whether all children are terminal (i.e. child._children.Count == 0)
                foreach (OctreeNode child in node._children)
                {
                    countGrandChildren += child._children.Count;
                }

                // All children are terminal and no disjoint (by implication of previous steps). Remove children
                if (countGrandChildren == 0)
                {
                    node._children.Clear();
                    node._flag = PolyhedronIntersectEnum.IntersectOrInside;
                    return;
                }
            }
            else
            {
                // at _depth == Octree.MaxDepth there is nothing else to do since the test has been done at the parent level and when entering this stage, the test has determined
                // that the cell is intersected with the polyH
            }

            return;
        }