Пример #1
0
 public AutoencoderWeights(int PNumLayers, RBMLayer[] PLayers, IWeightInitializer PWInitializer)
 {
     numweightsets = PNumLayers - 1;
     weights       = new RBMWeightSet[numweightsets];
     for (int i = 0; i < numweightsets; i++)
     {
         weights[i] = new RBMWeightSet(PLayers[i].Count, PLayers[i + 1].Count, PWInitializer);
     }
 }
Пример #2
0
 internal void Load(TextReader PFile)
 {
     numweightsets = int.Parse(PFile.ReadLine());
     weights       = new RBMWeightSet[numweightsets];
     for (int i = 0; i < numweightsets; i++)
     {
         weights[i] = RBMWeightSet.Load(PFile);
     }
 }
Пример #3
0
 public RBM(RBM PA)
 {
     visibles     = (RBMLayer)PA.visibles.Clone();
     hiddens      = (RBMLayer)PA.hiddens.Clone();
     weights      = (RBMWeightSet)PA.weights.Clone();
     learnrate    = PA.learnrate;
     trainingdata = PA.trainingdata;
     numvisibles  = PA.numvisibles;
     numhiddens   = PA.numhiddens;
 }
Пример #4
0
 private void InitWeights(IWeightInitializer PWeightInit)
 {
     weights = new RBMWeightSet(numvisibles, numhiddens, PWeightInit);
     for (int i = 0; i < numvisibles; i++)
     {
         for (int j = 0; j < numhiddens; j++)
         {
             weights.SetWeight(i, j, Utility.NextGaussian(0, 0.1));
         }
     }
 }
Пример #5
0
        public object Clone()
        {
            RBMWeightSet newweights = new RBMWeightSet(presize, postsize, new ZeroWeightInitializer());

            for (int i = 0; i < presize; i++)
            {
                for (int j = 0; j < postsize; j++)
                {
                    newweights.SetWeight(i, j, weights[i][j]);
                }
            }
            return(newweights);
        }
Пример #6
0
        internal static RBMWeightSet Load(TextReader PFile)
        {
            RBMWeightSet retval = new RBMWeightSet();

            retval.presize       = int.Parse(PFile.ReadLine());
            retval.weights       = new double[retval.presize][];
            retval.weightchanges = new double[retval.presize][];
            for (int i = 0; i < retval.presize; i++)
            {
                retval.weights[i] = Utility.LoadArray(PFile);
            }
            retval.postsize = retval.weights[0].GetLength(0);
            for (int i = 0; i < retval.presize; i++)
            {
                retval.weightchanges[i] = new double[retval.postsize];
            }
            return(retval);
        }
 public static void Train(RBMLayer PLayerVis, RBMLayer PLayerHid, TrainingData PData
                          , RBMLearningRate PLearnRate, RBMWeightSet PWeightSet)
 {
     weightset = PWeightSet;
     learnrate = PLearnRate;
     for (int i = 0; i < PLayerVis.Count; i++)
     {
         for (int j = 0; j < PLayerHid.Count; j++)
         {
             TrainWeight(i, j, CalculateTrainAmount(PData.posvis[i], PData.poshid[j]
                                                    , PData.negvis[i], PData.neghid[j]));
         }
         TrainBias(PLayerVis, i, PData.posvis[i], PData.negvis[i]);
     }
     for (int j = 0; j < PLayerHid.Count; j++)
     {
         TrainBias(PLayerHid, j, PData.poshid[j], PData.neghid[j]);
     }
 }