Пример #1
0
        /// <summary>
        /// </summary>
        /// <param name="thisVal">
        /// </param>
        /// <returns>
        /// </returns>
        private bool LucasStrongTestHelper(BigInteger thisVal)
        {
            // Do the test (selects D based on Selfridge)
            // Let D be the first element of the sequence
            // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
            // Let P = 1, Q = (1-D) / 4
            long D = 5, sign = -1, dCount = 0;
            bool done = false;

            while (!done)
            {
                int Jresult = Jacobi(D, thisVal);

                if (Jresult == -1)
                {
                    done = true; // J(D, this) = 1
                }
                else
                {
                    if (Jresult == 0 && Math.Abs(D) < thisVal)
                    {
                        // divisor found
                        return false;
                    }

                    if (dCount == 20)
                    {
                        // check for square
                        BigInteger root = thisVal.sqrt();
                        if (root * root == thisVal)
                        {
                            return false;
                        }
                    }

                    // Console.WriteLine(D);
                    D = (Math.Abs(D) + 2) * sign;
                    sign = -sign;
                }

                dCount++;
            }

            long Q = (1 - D) >> 2;

            /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */
            BigInteger p_add1 = thisVal + 1;
            int s = 0;

            for (int index = 0; index < p_add1.dataLength; index++)
            {
                uint mask = 0x01;

                for (int i = 0; i < 32; i++)
                {
                    if ((p_add1.data[index] & mask) != 0)
                    {
                        index = p_add1.dataLength; // to break the outer loop
                        break;
                    }

                    mask <<= 1;
                    s++;
                }
            }

            BigInteger t = p_add1 >> s;

            // calculate constant = b^(2k) / m
            // for Barrett Reduction
            BigInteger constant = new BigInteger();

            int nLen = thisVal.dataLength << 1;
            constant.data[nLen] = 0x00000001;
            constant.dataLength = nLen + 1;

            constant = constant / thisVal;

            BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
            bool isPrime = false;

            if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0)
                || (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
            {
                // u(t) = 0 or V(t) = 0
                isPrime = true;
            }

            for (int i = 1; i < s; i++)
            {
                if (!isPrime)
                {
                    // doubling of index
                    lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                    lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                    // lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;
                    if (lucas[1].dataLength == 1 && lucas[1].data[0] == 0)
                    {
                        isPrime = true;
                    }
                }

                lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant); // Q^k
            }

            if (isPrime)
            {
                // additional checks for composite numbers
                // If n is prime and gcd(n, Q) == 1, then
                // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n
                BigInteger g = thisVal.gcd(Q);
                if (g.dataLength == 1 && g.data[0] == 1)
                {
                    // gcd(this, Q) == 1
                    if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                    {
                        lucas[2] += thisVal;
                    }

                    BigInteger temp = (Q * Jacobi(Q, thisVal)) % thisVal;
                    if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                    {
                        temp += thisVal;
                    }

                    if (lucas[2] != temp)
                    {
                        isPrime = false;
                    }
                }
            }

            return isPrime;
        }
Пример #2
0
        // ***********************************************************************
        // Returns the k_th number in the Lucas Sequence reduced modulo n.
        // Uses index doubling to speed up the process.  For example, to calculate V(k),
        // we maintain two numbers in the sequence V(n) and V(n+1).
        // To obtain V(2n), we use the identity
        // V(2n) = (V(n) * V(n)) - (2 * Q^n)
        // To obtain V(2n+1), we first write it as
        // V(2n+1) = V((n+1) + n)
        // and use the identity
        // V(m+n) = V(m) * V(n) - Q * V(m-n)
        // Hence,
        // V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
        // = V(n+1) * V(n) - Q^n * V(1)
        // = V(n+1) * V(n) - Q^n * P
        // We use k in its binary expansion and perform index doubling for each
        // bit position.  For each bit position that is set, we perform an
        // index doubling followed by an index addition.  This means that for V(n),
        // we need to update it to V(2n+1).  For V(n+1), we need to update it to
        // V((2n+1)+1) = V(2*(n+1))
        // This function returns
        // [0] = U(k)
        // [1] = V(k)
        // [2] = Q^n
        // Where U(0) = 0 % n, U(1) = 1 % n
        // V(0) = 2 % n, V(1) = P % n
        // ***********************************************************************

        // ***********************************************************************
        // Performs the calculation of the kth term in the Lucas Sequence.
        // For details of the algorithm, see reference [9].
        // k must be odd.  i.e LSB == 1
        // ***********************************************************************

        #region Methods

        /// <summary>
        /// </summary>
        /// <param name="P">
        /// </param>
        /// <param name="Q">
        /// </param>
        /// <param name="k">
        /// </param>
        /// <param name="n">
        /// </param>
        /// <param name="constant">
        /// </param>
        /// <param name="s">
        /// </param>
        /// <returns>
        /// </returns>
        /// <exception cref="ArgumentException">
        /// </exception>
        private static BigInteger[] LucasSequenceHelper(
            BigInteger P, 
            BigInteger Q, 
            BigInteger k, 
            BigInteger n, 
            BigInteger constant, 
            int s)
        {
            BigInteger[] result = new BigInteger[3];

            if ((k.data[0] & 0x00000001) == 0)
            {
                throw new ArgumentException("Argument k must be odd.");
            }

            int numbits = k.bitCount();
            uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

            // v = v0, v1 = v1, u1 = u1, Q_k = Q^0
            BigInteger v = 2 % n, Q_k = 1 % n, v1 = P % n, u1 = Q_k;
            bool flag = true;

            for (int i = k.dataLength - 1; i >= 0; i--)
            {
                // iterate on the binary expansion of k
                // Console.WriteLine("round");
                while (mask != 0)
                {
                    if (i == 0 && mask == 0x00000001)
                    {
                        // last bit
                        break;
                    }

                    if ((k.data[i] & mask) != 0)
                    {
                        // bit is set
                        // index doubling with addition
                        u1 = (u1 * v1) % n;

                        v = ((v * v1) - (P * Q_k)) % n;
                        v1 = n.BarrettReduction(v1 * v1, n, constant);
                        v1 = (v1 - ((Q_k * Q) << 1)) % n;

                        if (flag)
                        {
                            flag = false;
                        }
                        else
                        {
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }

                        Q_k = (Q_k * Q) % n;
                    }
                    else
                    {
                        // index doubling
                        u1 = ((u1 * v) - Q_k) % n;

                        v1 = ((v * v1) - (P * Q_k)) % n;
                        v = n.BarrettReduction(v * v, n, constant);
                        v = (v - (Q_k << 1)) % n;

                        if (flag)
                        {
                            Q_k = Q % n;
                            flag = false;
                        }
                        else
                        {
                            Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }
                    }

                    mask >>= 1;
                }

                mask = 0x80000000;
            }

            // at this point u1 = u(n+1) and v = v(n)
            // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)
            u1 = ((u1 * v) - Q_k) % n;
            v = ((v * v1) - (P * Q_k)) % n;
            if (flag)
            {
                flag = false;
            }
            else
            {
                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
            }

            Q_k = (Q_k * Q) % n;

            for (int i = 0; i < s; i++)
            {
                // index doubling
                u1 = (u1 * v) % n;
                v = ((v * v) - (Q_k << 1)) % n;

                if (flag)
                {
                    Q_k = Q % n;
                    flag = false;
                }
                else
                {
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                }
            }

            result[0] = u1;
            result[1] = v;
            result[2] = Q_k;

            return result;
        }