public static CAAPhysicalMarsDetails Calculate(double JD, bool bHighPrecision) { //What will be the return value CAAPhysicalMarsDetails details = new CAAPhysicalMarsDetails(); //Step 1 double T = (JD - 2451545) / 36525; double Lambda0 = 352.9065 + 1.17330 * T; double Lambda0rad = AASCoordinateTransformation.DegreesToRadians(Lambda0); double Beta0 = 63.2818 - 0.00394 * T; double Beta0rad = AASCoordinateTransformation.DegreesToRadians(Beta0); //Step 2 double l0 = AASEarth.EclipticLongitude(JD, bHighPrecision); double l0rad = AASCoordinateTransformation.DegreesToRadians(l0); double b0 = AASEarth.EclipticLatitude(JD, bHighPrecision); double b0rad = AASCoordinateTransformation.DegreesToRadians(b0); double R = AASEarth.RadiusVector(JD, bHighPrecision); double PreviousLightTravelTime = 0; double LightTravelTime = 0; double x = 0; double y = 0; double z = 0; bool bIterate = true; double DELTA = 0; double l = 0; double lrad = 0; double b = 0; double r = 0; while (bIterate) { double JD2 = JD - LightTravelTime; //Step 3 l = AASMars.EclipticLongitude(JD2, bHighPrecision); lrad = AASCoordinateTransformation.DegreesToRadians(l); b = AASMars.EclipticLatitude(JD2, bHighPrecision); double brad = AASCoordinateTransformation.DegreesToRadians(b); r = AASMars.RadiusVector(JD2, bHighPrecision); //Step 4 x = r * Math.Cos(brad) * Math.Cos(lrad) - R * Math.Cos(l0rad); y = r * Math.Cos(brad) * Math.Sin(lrad) - R * Math.Sin(l0rad); z = r * Math.Sin(brad) - R * Math.Sin(b0rad); DELTA = Math.Sqrt(x * x + y * y + z * z); LightTravelTime = AASElliptical.DistanceToLightTime(DELTA); //Prepare for the next loop around bIterate = (Math.Abs(LightTravelTime - PreviousLightTravelTime) > 2E-6); //2E-6 correponds to 0.17 of a second if (bIterate) { PreviousLightTravelTime = LightTravelTime; } } //Step 5 double lambdarad = Math.Atan2(y, x); double lambda = AASCoordinateTransformation.RadiansToDegrees(lambdarad); double betarad = Math.Atan2(z, Math.Sqrt(x * x + y * y)); double beta = AASCoordinateTransformation.RadiansToDegrees(betarad); //Step 6 details.DE = AASCoordinateTransformation.RadiansToDegrees(Math.Asin(-Math.Sin(Beta0rad) * Math.Sin(betarad) - Math.Cos(Beta0rad) * Math.Cos(betarad) * Math.Cos(Lambda0rad - lambdarad))); //Step 7 double N = 49.5581 + 0.7721 * T; double Nrad = AASCoordinateTransformation.DegreesToRadians(N); double ldash = l - 0.00697 / r; double ldashrad = AASCoordinateTransformation.DegreesToRadians(ldash); double bdash = b - 0.000225 * (Math.Cos(lrad - Nrad) / r); double bdashrad = AASCoordinateTransformation.DegreesToRadians(bdash); //Step 8 details.DS = AASCoordinateTransformation.RadiansToDegrees(Math.Asin(-Math.Sin(Beta0rad) * Math.Sin(bdashrad) - Math.Cos(Beta0rad) * Math.Cos(bdashrad) * Math.Cos(Lambda0rad - ldashrad))); //Step 9 double W = AASCoordinateTransformation.MapTo0To360Range(11.504 + 350.89200025 * (JD - LightTravelTime - 2433282.5)); //Step 10 double e0 = AASNutation.MeanObliquityOfEcliptic(JD); double e0rad = AASCoordinateTransformation.DegreesToRadians(e0); AAS2DCoordinate PoleEquatorial = AASCoordinateTransformation.Ecliptic2Equatorial(Lambda0, Beta0, e0); double alpha0rad = AASCoordinateTransformation.HoursToRadians(PoleEquatorial.X); double delta0rad = AASCoordinateTransformation.DegreesToRadians(PoleEquatorial.Y); //Step 11 double u = y * Math.Cos(e0rad) - z * Math.Sin(e0rad); double v = y * Math.Sin(e0rad) + z * Math.Cos(e0rad); double alpharad = Math.Atan2(u, x); double alpha = AASCoordinateTransformation.RadiansToHours(alpharad); double deltarad = Math.Atan2(v, Math.Sqrt(x * x + u * u)); double delta = AASCoordinateTransformation.RadiansToDegrees(deltarad); double xi = Math.Atan2(Math.Sin(delta0rad) * Math.Cos(deltarad) * Math.Cos(alpha0rad - alpharad) - Math.Sin(deltarad) * Math.Cos(delta0rad), Math.Cos(deltarad) * Math.Sin(alpha0rad - alpharad)); //Step 12 details.w = AASCoordinateTransformation.MapTo0To360Range(W - AASCoordinateTransformation.RadiansToDegrees(xi)); //Step 13 double NutationInLongitude = AASNutation.NutationInLongitude(JD); double NutationInObliquity = AASNutation.NutationInObliquity(JD); //Step 14 lambda += 0.005693 * Math.Cos(l0rad - lambdarad) / Math.Cos(betarad); beta += 0.005693 * Math.Sin(l0rad - lambdarad) * Math.Sin(betarad); //Step 15 Lambda0 += NutationInLongitude / 3600; lambda += NutationInLongitude / 3600; e0 += NutationInObliquity / 3600; //Step 16 AAS2DCoordinate ApparentPoleEquatorial = AASCoordinateTransformation.Ecliptic2Equatorial(Lambda0, Beta0, e0); double alpha0dash = AASCoordinateTransformation.HoursToRadians(ApparentPoleEquatorial.X); double delta0dash = AASCoordinateTransformation.DegreesToRadians(ApparentPoleEquatorial.Y); AAS2DCoordinate ApparentMars = AASCoordinateTransformation.Ecliptic2Equatorial(lambda, beta, e0); double alphadash = AASCoordinateTransformation.HoursToRadians(ApparentMars.X); double deltadash = AASCoordinateTransformation.DegreesToRadians(ApparentMars.Y); //Step 17 details.P = AASCoordinateTransformation.MapTo0To360Range(AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(Math.Cos(delta0dash) * Math.Sin(alpha0dash - alphadash), Math.Sin(delta0dash) * Math.Cos(deltadash) - Math.Cos(delta0dash) * Math.Sin(deltadash) * Math.Cos(alpha0dash - alphadash)))); //Step 18 double SunLambda = AASSun.GeometricEclipticLongitude(JD, bHighPrecision); double SunBeta = AASSun.GeometricEclipticLatitude(JD, bHighPrecision); AAS2DCoordinate SunEquatorial = AASCoordinateTransformation.Ecliptic2Equatorial(SunLambda, SunBeta, e0); details.X = AASMoonIlluminatedFraction.PositionAngle(SunEquatorial.X, SunEquatorial.Y, alpha, delta); //Step 19 details.d = 9.36 / DELTA; details.k = AASIlluminatedFraction.IlluminatedFraction(r, R, DELTA); details.q = (1 - details.k) * details.d; return(details); }
public static AASEllipticalPlanetaryDetails Calculate(double JD, AASEllipticalObject ellipticalObject, bool bHighPrecision) { //What will the the return value AASEllipticalPlanetaryDetails details = new AASEllipticalPlanetaryDetails(); //Calculate the position of the earth first double JD0 = JD; double L0 = AASEarth.EclipticLongitude(JD0, bHighPrecision); double B0 = AASEarth.EclipticLatitude(JD0, bHighPrecision); double R0 = AASEarth.RadiusVector(JD0, bHighPrecision); L0 = AASCoordinateTransformation.DegreesToRadians(L0); B0 = AASCoordinateTransformation.DegreesToRadians(B0); double cosB0 = Math.Cos(B0); //Iterate to find the positions adjusting for light-time correction if required double L = 0; double B = 0; double R = 0; if (ellipticalObject != AASEllipticalObject.SUN) { bool bRecalc = true; bool bFirstRecalc = true; double LPrevious = 0; double BPrevious = 0; double RPrevious = 0; while (bRecalc) { switch (ellipticalObject) { case AASEllipticalObject.SUN: L = AASSun.GeometricEclipticLongitude(JD0, bHighPrecision); B = AASSun.GeometricEclipticLatitude(JD0, bHighPrecision); R = AASEarth.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.MERCURY: L = AASMercury.EclipticLongitude(JD0, bHighPrecision); B = AASMercury.EclipticLatitude(JD0, bHighPrecision); R = AASMercury.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.VENUS: L = AASVenus.EclipticLongitude(JD0, bHighPrecision); B = AASVenus.EclipticLatitude(JD0, bHighPrecision); R = AASVenus.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.MARS: L = AASMars.EclipticLongitude(JD0, bHighPrecision); B = AASMars.EclipticLatitude(JD0, bHighPrecision); R = AASMars.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.JUPITER: L = AASJupiter.EclipticLongitude(JD0, bHighPrecision); B = AASJupiter.EclipticLatitude(JD0, bHighPrecision); R = AASJupiter.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.SATURN: L = AASSaturn.EclipticLongitude(JD0, bHighPrecision); B = AASSaturn.EclipticLatitude(JD0, bHighPrecision); R = AASSaturn.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.URANUS: L = AASUranus.EclipticLongitude(JD0, bHighPrecision); B = AASUranus.EclipticLatitude(JD0, bHighPrecision); R = AASUranus.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.NEPTUNE: L = AASNeptune.EclipticLongitude(JD0, bHighPrecision); B = AASNeptune.EclipticLatitude(JD0, bHighPrecision); R = AASNeptune.RadiusVector(JD0, bHighPrecision); break; case AASEllipticalObject.PLUTO: L = AASPluto.EclipticLongitude(JD0); B = AASPluto.EclipticLatitude(JD0); R = AASPluto.RadiusVector(JD0); break; default: break; } if (!bFirstRecalc) { bRecalc = ((Math.Abs(L - LPrevious) > 0.00001) || (Math.Abs(B - BPrevious) > 0.00001) || (Math.Abs(R - RPrevious) > 0.000001)); LPrevious = L; BPrevious = B; RPrevious = R; } else { bFirstRecalc = false; } //Calculate the new value if (bRecalc) { double Lrad = AASCoordinateTransformation.DegreesToRadians(L); double Brad = AASCoordinateTransformation.DegreesToRadians(B); double cosB = Math.Cos(Brad); double cosL = Math.Cos(Lrad); double x1 = R * cosB * cosL - R0 * cosB0 * Math.Cos(L0); double y1 = R * cosB * Math.Sin(Lrad) - R0 * cosB0 * Math.Sin(L0); double z1 = R * Math.Sin(Brad) - R0 * Math.Sin(B0); double distance = Math.Sqrt(x1 * x1 + y1 * y1 + z1 * z1); //Prepare for the next loop around JD0 = JD - AASElliptical.DistanceToLightTime(distance); } } } double x = 0; double y = 0; double z = 0; if (ellipticalObject != AASEllipticalObject.SUN) { double Lrad = AASCoordinateTransformation.DegreesToRadians(L); double Brad = AASCoordinateTransformation.DegreesToRadians(B); double cosB = Math.Cos(Brad); double cosL = Math.Cos(Lrad); x = R * cosB * cosL - R0 * cosB0 * Math.Cos(L0); y = R * cosB * Math.Sin(Lrad) - R0 * cosB0 * Math.Sin(L0); z = R * Math.Sin(Brad) - R0 * Math.Sin(B0); } else { x = -R0 *cosB0 *Math.Cos(L0); y = -R0 *cosB0 *Math.Sin(L0); z = -R0 *Math.Sin(B0); } double x2 = x * x; double y2 = y * y; details.ApparentGeocentricLatitude = AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(z, Math.Sqrt(x2 + y2))); details.ApparentGeocentricDistance = Math.Sqrt(x2 + y2 + z * z); details.ApparentGeocentricLongitude = AASCoordinateTransformation.MapTo0To360Range(AASCoordinateTransformation.RadiansToDegrees(Math.Atan2(y, x))); details.ApparentLightTime = AASElliptical.DistanceToLightTime(details.ApparentGeocentricDistance); //Adjust for Aberration AAS2DCoordinate Aberration = AASAberration.EclipticAberration(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, JD, bHighPrecision); details.ApparentGeocentricLongitude += Aberration.X; details.ApparentGeocentricLatitude += Aberration.Y; //convert to the FK5 system double DeltaLong = AASFK5.CorrectionInLongitude(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, JD); details.ApparentGeocentricLatitude += AASFK5.CorrectionInLatitude(details.ApparentGeocentricLongitude, JD); details.ApparentGeocentricLongitude += DeltaLong; //Correct for nutation double NutationInLongitude = AASNutation.NutationInLongitude(JD); double Epsilon = AASNutation.TrueObliquityOfEcliptic(JD); details.ApparentGeocentricLongitude += AASCoordinateTransformation.DMSToDegrees(0, 0, NutationInLongitude); //Convert to RA and Dec AAS2DCoordinate ApparentEqu = AASCoordinateTransformation.Ecliptic2Equatorial(details.ApparentGeocentricLongitude, details.ApparentGeocentricLatitude, Epsilon); details.ApparentGeocentricRA = ApparentEqu.X; details.ApparentGeocentricDeclination = ApparentEqu.Y; return(details); }