Пример #1
0
    //**************************************************************************************

    /// <summary>
    ///	Build cllasifier model and save it to a file.
    /// </summary>
    public override void Build(CandlestickCollection iCandlestick)
    {
        List <int> trainingPoints = null;

        // Calculate average profit and std dev
        if (J48Info.ProfitAverage is null || J48Info.ProfitStdDev is null)
        {
            trainingPoints = LoadTrainingPoints(iCandlestick, ID, ProfitTime);
            float[] profits = FullToTraining(new List <float>(CalculateFutureProfits(iCandlestick[kTrainingPeriod], ProfitTime)), trainingPoints).ToArray();
            J48Info.ProfitStdDev  = Statistics.StandardDeviation(profits);
            J48Info.ProfitAverage = J48Info.ParentID is null ? 0.0f : Statistics.ArithmeticMean(profits);
            WekaJ48Info.UpdateDB(J48Info);
        }

        // Build model
        if (!File.Exists(ModelFilename))
        {
            OutputMessage("Building model");

            if (trainingPoints is null)
            {
                trainingPoints = LoadTrainingPoints(iCandlestick, ID, ProfitTime);
            }

            Model = new weka.classifiers.trees.J48();
            Model.buildClassifier(CreateInstances(iCandlestick, trainingPoints, Attributes, Parameters, Period, ProfitTime));
            weka.core.SerializationHelper.write(ModelFilename, Model);
        }

        // Perfrom crossfold test
        if (J48Info.Precision is null)
        {
            if (Model is null)
            {
                LoadModel();
            }

            OutputMessage("Perfroming crossfold");

            if (trainingPoints is null)
            {
                trainingPoints = LoadTrainingPoints(iCandlestick, ID, ProfitTime);
            }

            var instances  = CreateInstances(iCandlestick, trainingPoints, Attributes, Parameters, Period, ProfitTime);
            var evaluation = new weka.classifiers.Evaluation(instances);
            evaluation.crossValidateModel(Model, instances, 10, new java.util.Random(0));

            J48Info.Precision = (float)evaluation.pctCorrect();

            WekaJ48Info.UpdateDB(J48Info);
        }

        // Perfrom singular test
        if (J48Info.IsSingular == null)
        {
            if (Model is null)
            {
                LoadModel();
            }

            OutputMessage("Perfroming singular test");

            var results = new SortedList <Prediction, List <int> >();
            foreach (Prediction p in (Prediction[])Enum.GetValues(typeof(Prediction)))
            {
                results.Add(p, new List <int>());
            }

            if (trainingPoints is null)
            {
                trainingPoints = LoadTrainingPoints(iCandlestick, ID, ProfitTime);
            }

            var parameters = CalculateParameters(Parameters, iCandlestick, trainingPoints, Period);

            for (int k = 0; k < parameters.Count; k++)
            {
                var pred = Predict(parameters[k]);
                results[pred].Add(trainingPoints[k]);
            }

            J48Info.IsSingular = results.Count(x => x.Value.Count > 0) <= 1;

            WekaJ48Info.UpdateDB(J48Info);
        }

        // Calculating prediction profits
        if (J48Info.PredictionProfits.Count(x => x != null) == 0)
        {
            if (Model is null)
            {
                LoadModel();
            }

            OutputMessage("Calculating prediction profits");

            if (trainingPoints is null)
            {
                trainingPoints = LoadTrainingPoints(iCandlestick, ID, ProfitTime);
            }

            var predictionPoints = GetHistoricalPredictionPoints(iCandlestick, trainingPoints);

            foreach (Prediction p in (Prediction[])Enum.GetValues(typeof(Prediction)))
            {
                float[] profits = FullToTraining(new List <float>(CalculateFutureProfits(iCandlestick[kTrainingPeriod], ProfitTime)), predictionPoints[p]).ToArray();

                if (profits.Length < 10)
                {
                    J48Info.PredictionProfits[(int)p] = DecisionToFutureProfit(p, (float)J48Info.ProfitStdDev, (float)J48Info.ProfitAverage);
                }
                else
                {
                    J48Info.PredictionProfits[(int)p] = Statistics.ArithmeticMean(profits);
                }
            }

            WekaJ48Info.UpdateDB(J48Info);
        }

        // Create children
        if (!J48Info.ReproductionComplete.GetValueOrDefault(false))
        {
            lock (this)
            {
                if (J48Info.Precision > 50.0f && !J48Info.IsSingular.GetValueOrDefault(false))
                {
                    OutputMessage("Creating children");

                    if (trainingPoints is null)
                    {
                        trainingPoints = LoadTrainingPoints(iCandlestick, ID, ProfitTime);
                    }

                    var predictionPoints = GetHistoricalPredictionPoints(iCandlestick, trainingPoints);

                    foreach (Prediction p in (Prediction[])Enum.GetValues(typeof(Prediction)))
                    {
                        if (predictionPoints[p] != null && predictionPoints[p].Count >= 1000 && J48Info.ChildrenID[(int)p] == null)
                        {
                            var child = CreateNew(ParametersID, Parameters, Period, ProfitTime, predictionPoints[p]);

                            // Set parent
                            child.J48Info.ParentID = ID;
                            WekaJ48Info.UpdateDB(child.J48Info);

                            // Update parent info
                            J48Info.ChildrenID[(int)p] = (int)child.ID;
                            WekaJ48Info.UpdateDB(J48Info);
                            childs[(int)p] = child;
                        }
                    }
                }

                J48Info.ReproductionComplete = true;
                WekaJ48Info.UpdateDB(J48Info);
            }
        }
    }
    // Test the classification result of each map that a user played,
    // with the data available as if they were playing through it
    public static void classifyTest(String dataString, String playerID)
    {
        String results = "";

        try {
            java.io.StringReader   stringReader = new java.io.StringReader(dataString);
            java.io.BufferedReader buffReader   = new java.io.BufferedReader(stringReader);

            /* NOTE THAT FOR NAIVE BAYES ALL WEIGHTS CAN BE = 1*/
            //weka.core.converters.ConverterUtils.DataSource source = new weka.core.converters.ConverterUtils.DataSource("iris.arff");
            weka.core.Instances data = new weka.core.Instances(buffReader);             //source.getDataSet();
            // setting class attribute if the data format does not provide this information
            // For example, the XRFF format saves the class attribute information as well
            if (data.classIndex() == -1)
            {
                data.setClassIndex(data.numAttributes() - 1);
            }

            weka.classifiers.Classifier cl;
            for (int i = 3; i < data.numInstances(); i++)
            {
                cl = new weka.classifiers.bayes.NaiveBayes();
                //cl = new weka.classifiers.trees.J48();
                //cl = new weka.classifiers.lazy.IB1();
                //cl = new weka.classifiers.functions.MultilayerPerceptron();
                ((weka.classifiers.functions.MultilayerPerceptron)cl).setHiddenLayers("12");

                weka.core.Instances subset = new weka.core.Instances(data, 0, i);
                cl.buildClassifier(subset);

                weka.classifiers.Evaluation eval = new weka.classifiers.Evaluation(subset);
                eval.crossValidateModel(cl, subset, 3, new java.util.Random(1));
                results = results + eval.pctCorrect();                 // For accuracy measurement
                /* For Mathews Correlation Coefficient */
                //double TP = eval.numTruePositives(1);
                //double FP = eval.numFalsePositives(1);
                //double TN = eval.numTrueNegatives(1);
                //double FN = eval.numFalseNegatives(1);
                //double correlationCoeff = ((TP*TN)-(FP*FN))/Math.Sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN));
                //results = results + correlationCoeff;
                if (i != data.numInstances() - 1)
                {
                    results = results + ", ";
                }
                if (i == data.numInstances() - 1)
                {
                    Debug.Log("Player: " + playerID + ", Num Maps: " + data.numInstances() + ", AUC: " + eval.areaUnderROC(1));
                }
            }
        } catch (java.lang.Exception ex)
        {
            Debug.LogError(ex.getMessage());
        }
        // Write values to file for a matlab read
        // For accuracy
        StreamWriter writer = new StreamWriter("DataForMatlab/" + playerID + "_CrossFoldValidations_NeuralNet.txt");

        //StreamWriter writer = new StreamWriter("DataForMatlab/"+playerID+"_CrossFoldCorrCoeff.txt"); // For mathews cc
        writer.WriteLine(results);
        writer.Close();
        Debug.Log(playerID + " has been written to file");
    }