public void feedForward(double[] pattern) { lock (locker) { nn.feedForward(pattern); } }
public void TrainUntilAccuracy(double desired_accuracy, double desired_precision, int check_interval = 1000) { while (getAccuracy(desired_precision) < desired_accuracy) { for (int i = 0; i < check_interval; i++) { NN.feedForward(tset.inputs[i % tset.size]); backpropagate(tset.outputs[i % tset.size]); } } }
public override double Evaluate(double[] inputs) { NN.feedForward(inputs); //Console.Write("Hidden\t: "); //StdTest.WeightsTest.PrintHist(NN.hiddenNeurons); //Console.WriteLine($"OUT: {NN.outputNeurons[0].ToString("N2")}"); return(NN.outputNeurons[0]); }
public void TrainOne(double[] inputs, double[] desiredOutputs, double learningRate) { NN.feedForward(inputs); backpropagate(desiredOutputs, learningRate); }