/************************************************************************* * Linear regression * * Subroutine builds model: * * Y = A(0)*X[0] + ... + A(N-1)*X[N-1] + A(N) * * and model found in ALGLIB format, covariation matrix, training set errors * (rms, average, average relative) and leave-one-out cross-validation * estimate of the generalization error. CV estimate calculated using fast * algorithm with O(NPoints*NVars) complexity. * * When covariation matrix is calculated standard deviations of function * values are assumed to be equal to RMS error on the training set. * * INPUT PARAMETERS: * XY - training set, array [0..NPoints-1,0..NVars]: * NVars columns - independent variables * last column - dependent variable * NPoints - training set size, NPoints>NVars+1 * NVars - number of independent variables * * OUTPUT PARAMETERS: * Info - return code: * -255, in case of unknown internal error * -4, if internal SVD subroutine haven't converged * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1). * 1, if subroutine successfully finished * LM - linear model in the ALGLIB format. Use subroutines of * this unit to work with the model. * AR - additional results * * * -- ALGLIB -- * Copyright 02.08.2008 by Bochkanov Sergey *************************************************************************/ public static void lrbuild(ref double[,] xy, int npoints, int nvars, ref int info, ref linearmodel lm, ref lrreport ar) { double[] s = new double[0]; int i = 0; double sigma2 = 0; int i_ = 0; if (npoints <= nvars + 1 | nvars < 1) { info = -1; return; } s = new double[npoints - 1 + 1]; for (i = 0; i <= npoints - 1; i++) { s[i] = 1; } lrbuilds(ref xy, ref s, npoints, nvars, ref info, ref lm, ref ar); if (info < 0) { return; } sigma2 = AP.Math.Sqr(ar.rmserror) * npoints / (npoints - nvars - 1); for (i = 0; i <= nvars; i++) { for (i_ = 0; i_ <= nvars; i_++) { ar.c[i, i_] = sigma2 * ar.c[i, i_]; } } }
/************************************************************************* Internal linear regression subroutine *************************************************************************/ private static void lrinternal(double[,] xy, double[] s, int npoints, int nvars, ref int info, linearmodel lm, lrreport ar) { double[,] a = new double[0,0]; double[,] u = new double[0,0]; double[,] vt = new double[0,0]; double[,] vm = new double[0,0]; double[,] xym = new double[0,0]; double[] b = new double[0]; double[] sv = new double[0]; double[] t = new double[0]; double[] svi = new double[0]; double[] work = new double[0]; int i = 0; int j = 0; int k = 0; int ncv = 0; int na = 0; int nacv = 0; double r = 0; double p = 0; double epstol = 0; lrreport ar2 = new lrreport(); int offs = 0; linearmodel tlm = new linearmodel(); int i_ = 0; int i1_ = 0; info = 0; epstol = 1000; // // Check for errors in data // if( npoints<nvars || nvars<1 ) { info = -1; return; } for(i=0; i<=npoints-1; i++) { if( (double)(s[i])<=(double)(0) ) { info = -2; return; } } info = 1; // // Create design matrix // a = new double[npoints-1+1, nvars-1+1]; b = new double[npoints-1+1]; for(i=0; i<=npoints-1; i++) { r = 1/s[i]; for(i_=0; i_<=nvars-1;i_++) { a[i,i_] = r*xy[i,i_]; } b[i] = xy[i,nvars]/s[i]; } // // Allocate W: // W[0] array size // W[1] version number, 0 // W[2] NVars (minus 1, to be compatible with external representation) // W[3] coefficients offset // lm.w = new double[4+nvars-1+1]; offs = 4; lm.w[0] = 4+nvars; lm.w[1] = lrvnum; lm.w[2] = nvars-1; lm.w[3] = offs; // // Solve problem using SVD: // // 0. check for degeneracy (different types) // 1. A = U*diag(sv)*V' // 2. T = b'*U // 3. w = SUM((T[i]/sv[i])*V[..,i]) // 4. cov(wi,wj) = SUM(Vji*Vjk/sv[i]^2,K=1..M) // // see $15.4 of "Numerical Recipes in C" for more information // t = new double[nvars-1+1]; svi = new double[nvars-1+1]; ar.c = new double[nvars-1+1, nvars-1+1]; vm = new double[nvars-1+1, nvars-1+1]; if( !svd.rmatrixsvd(a, npoints, nvars, 1, 1, 2, ref sv, ref u, ref vt) ) { info = -4; return; } if( (double)(sv[0])<=(double)(0) ) { // // Degenerate case: zero design matrix. // for(i=offs; i<=offs+nvars-1; i++) { lm.w[i] = 0; } ar.rmserror = lrrmserror(lm, xy, npoints); ar.avgerror = lravgerror(lm, xy, npoints); ar.avgrelerror = lravgrelerror(lm, xy, npoints); ar.cvrmserror = ar.rmserror; ar.cvavgerror = ar.avgerror; ar.cvavgrelerror = ar.avgrelerror; ar.ncvdefects = 0; ar.cvdefects = new int[nvars-1+1]; ar.c = new double[nvars-1+1, nvars-1+1]; for(i=0; i<=nvars-1; i++) { for(j=0; j<=nvars-1; j++) { ar.c[i,j] = 0; } } return; } if( (double)(sv[nvars-1])<=(double)(epstol*math.machineepsilon*sv[0]) ) { // // Degenerate case, non-zero design matrix. // // We can leave it and solve task in SVD least squares fashion. // Solution and covariance matrix will be obtained correctly, // but CV error estimates - will not. It is better to reduce // it to non-degenerate task and to obtain correct CV estimates. // for(k=nvars; k>=1; k--) { if( (double)(sv[k-1])>(double)(epstol*math.machineepsilon*sv[0]) ) { // // Reduce // xym = new double[npoints-1+1, k+1]; for(i=0; i<=npoints-1; i++) { for(j=0; j<=k-1; j++) { r = 0.0; for(i_=0; i_<=nvars-1;i_++) { r += xy[i,i_]*vt[j,i_]; } xym[i,j] = r; } xym[i,k] = xy[i,nvars]; } // // Solve // lrinternal(xym, s, npoints, k, ref info, tlm, ar2); if( info!=1 ) { return; } // // Convert back to un-reduced format // for(j=0; j<=nvars-1; j++) { lm.w[offs+j] = 0; } for(j=0; j<=k-1; j++) { r = tlm.w[offs+j]; i1_ = (0) - (offs); for(i_=offs; i_<=offs+nvars-1;i_++) { lm.w[i_] = lm.w[i_] + r*vt[j,i_+i1_]; } } ar.rmserror = ar2.rmserror; ar.avgerror = ar2.avgerror; ar.avgrelerror = ar2.avgrelerror; ar.cvrmserror = ar2.cvrmserror; ar.cvavgerror = ar2.cvavgerror; ar.cvavgrelerror = ar2.cvavgrelerror; ar.ncvdefects = ar2.ncvdefects; ar.cvdefects = new int[nvars-1+1]; for(j=0; j<=ar.ncvdefects-1; j++) { ar.cvdefects[j] = ar2.cvdefects[j]; } ar.c = new double[nvars-1+1, nvars-1+1]; work = new double[nvars+1]; blas.matrixmatrixmultiply(ar2.c, 0, k-1, 0, k-1, false, vt, 0, k-1, 0, nvars-1, false, 1.0, ref vm, 0, k-1, 0, nvars-1, 0.0, ref work); blas.matrixmatrixmultiply(vt, 0, k-1, 0, nvars-1, true, vm, 0, k-1, 0, nvars-1, false, 1.0, ref ar.c, 0, nvars-1, 0, nvars-1, 0.0, ref work); return; } } info = -255; return; } for(i=0; i<=nvars-1; i++) { if( (double)(sv[i])>(double)(epstol*math.machineepsilon*sv[0]) ) { svi[i] = 1/sv[i]; } else { svi[i] = 0; } } for(i=0; i<=nvars-1; i++) { t[i] = 0; } for(i=0; i<=npoints-1; i++) { r = b[i]; for(i_=0; i_<=nvars-1;i_++) { t[i_] = t[i_] + r*u[i,i_]; } } for(i=0; i<=nvars-1; i++) { lm.w[offs+i] = 0; } for(i=0; i<=nvars-1; i++) { r = t[i]*svi[i]; i1_ = (0) - (offs); for(i_=offs; i_<=offs+nvars-1;i_++) { lm.w[i_] = lm.w[i_] + r*vt[i,i_+i1_]; } } for(j=0; j<=nvars-1; j++) { r = svi[j]; for(i_=0; i_<=nvars-1;i_++) { vm[i_,j] = r*vt[j,i_]; } } for(i=0; i<=nvars-1; i++) { for(j=i; j<=nvars-1; j++) { r = 0.0; for(i_=0; i_<=nvars-1;i_++) { r += vm[i,i_]*vm[j,i_]; } ar.c[i,j] = r; ar.c[j,i] = r; } } // // Leave-1-out cross-validation error. // // NOTATIONS: // A design matrix // A*x = b original linear least squares task // U*S*V' SVD of A // ai i-th row of the A // bi i-th element of the b // xf solution of the original LLS task // // Cross-validation error of i-th element from a sample is // calculated using following formula: // // ERRi = ai*xf - (ai*xf-bi*(ui*ui'))/(1-ui*ui') (1) // // This formula can be derived from normal equations of the // original task // // (A'*A)x = A'*b (2) // // by applying modification (zeroing out i-th row of A) to (2): // // (A-ai)'*(A-ai) = (A-ai)'*b // // and using Sherman-Morrison formula for updating matrix inverse // // NOTE 1: b is not zeroed out since it is much simpler and // does not influence final result. // // NOTE 2: some design matrices A have such ui that 1-ui*ui'=0. // Formula (1) can't be applied for such cases and they are skipped // from CV calculation (which distorts resulting CV estimate). // But from the properties of U we can conclude that there can // be no more than NVars such vectors. Usually // NVars << NPoints, so in a normal case it only slightly // influences result. // ncv = 0; na = 0; nacv = 0; ar.rmserror = 0; ar.avgerror = 0; ar.avgrelerror = 0; ar.cvrmserror = 0; ar.cvavgerror = 0; ar.cvavgrelerror = 0; ar.ncvdefects = 0; ar.cvdefects = new int[nvars-1+1]; for(i=0; i<=npoints-1; i++) { // // Error on a training set // i1_ = (offs)-(0); r = 0.0; for(i_=0; i_<=nvars-1;i_++) { r += xy[i,i_]*lm.w[i_+i1_]; } ar.rmserror = ar.rmserror+math.sqr(r-xy[i,nvars]); ar.avgerror = ar.avgerror+Math.Abs(r-xy[i,nvars]); if( (double)(xy[i,nvars])!=(double)(0) ) { ar.avgrelerror = ar.avgrelerror+Math.Abs((r-xy[i,nvars])/xy[i,nvars]); na = na+1; } // // Error using fast leave-one-out cross-validation // p = 0.0; for(i_=0; i_<=nvars-1;i_++) { p += u[i,i_]*u[i,i_]; } if( (double)(p)>(double)(1-epstol*math.machineepsilon) ) { ar.cvdefects[ar.ncvdefects] = i; ar.ncvdefects = ar.ncvdefects+1; continue; } r = s[i]*(r/s[i]-b[i]*p)/(1-p); ar.cvrmserror = ar.cvrmserror+math.sqr(r-xy[i,nvars]); ar.cvavgerror = ar.cvavgerror+Math.Abs(r-xy[i,nvars]); if( (double)(xy[i,nvars])!=(double)(0) ) { ar.cvavgrelerror = ar.cvavgrelerror+Math.Abs((r-xy[i,nvars])/xy[i,nvars]); nacv = nacv+1; } ncv = ncv+1; } if( ncv==0 ) { // // Something strange: ALL ui are degenerate. // Unexpected... // info = -255; return; } ar.rmserror = Math.Sqrt(ar.rmserror/npoints); ar.avgerror = ar.avgerror/npoints; if( na!=0 ) { ar.avgrelerror = ar.avgrelerror/na; } ar.cvrmserror = Math.Sqrt(ar.cvrmserror/ncv); ar.cvavgerror = ar.cvavgerror/ncv; if( nacv!=0 ) { ar.cvavgrelerror = ar.cvavgrelerror/nacv; } }
/************************************************************************* Like LRBuild but builds model Y = A(0)*X[0] + ... + A(N-1)*X[N-1] i.e. with zero constant term. -- ALGLIB -- Copyright 30.10.2008 by Bochkanov Sergey *************************************************************************/ public static void lrbuildz(double[,] xy, int npoints, int nvars, ref int info, linearmodel lm, lrreport ar) { double[] s = new double[0]; int i = 0; double sigma2 = 0; int i_ = 0; info = 0; if( npoints<=nvars+1 || nvars<1 ) { info = -1; return; } s = new double[npoints-1+1]; for(i=0; i<=npoints-1; i++) { s[i] = 1; } lrbuildzs(xy, s, npoints, nvars, ref info, lm, ar); if( info<0 ) { return; } sigma2 = math.sqr(ar.rmserror)*npoints/(npoints-nvars-1); for(i=0; i<=nvars; i++) { for(i_=0; i_<=nvars;i_++) { ar.c[i,i_] = sigma2*ar.c[i,i_]; } } }
/************************************************************************* Like LRBuildS, but builds model Y = A(0)*X[0] + ... + A(N-1)*X[N-1] i.e. with zero constant term. -- ALGLIB -- Copyright 30.10.2008 by Bochkanov Sergey *************************************************************************/ public static void lrbuildzs(double[,] xy, double[] s, int npoints, int nvars, ref int info, linearmodel lm, lrreport ar) { double[,] xyi = new double[0,0]; double[] x = new double[0]; double[] c = new double[0]; int i = 0; int j = 0; double v = 0; int offs = 0; double mean = 0; double variance = 0; double skewness = 0; double kurtosis = 0; int i_ = 0; info = 0; // // Test parameters // if( npoints<=nvars+1 || nvars<1 ) { info = -1; return; } // // Copy data, add one more column (constant term) // xyi = new double[npoints-1+1, nvars+1+1]; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=nvars-1;i_++) { xyi[i,i_] = xy[i,i_]; } xyi[i,nvars] = 0; xyi[i,nvars+1] = xy[i,nvars]; } // // Standartization: unusual scaling // x = new double[npoints-1+1]; c = new double[nvars-1+1]; for(j=0; j<=nvars-1; j++) { for(i_=0; i_<=npoints-1;i_++) { x[i_] = xy[i_,j]; } basestat.samplemoments(x, npoints, ref mean, ref variance, ref skewness, ref kurtosis); if( (double)(Math.Abs(mean))>(double)(Math.Sqrt(variance)) ) { // // variation is relatively small, it is better to // bring mean value to 1 // c[j] = mean; } else { // // variation is large, it is better to bring variance to 1 // if( (double)(variance)==(double)(0) ) { variance = 1; } c[j] = Math.Sqrt(variance); } for(i=0; i<=npoints-1; i++) { xyi[i,j] = xyi[i,j]/c[j]; } } // // Internal processing // lrinternal(xyi, s, npoints, nvars+1, ref info, lm, ar); if( info<0 ) { return; } // // Un-standartization // offs = (int)Math.Round(lm.w[3]); for(j=0; j<=nvars-1; j++) { // // J-th term is updated // lm.w[offs+j] = lm.w[offs+j]/c[j]; v = 1/c[j]; for(i_=0; i_<=nvars;i_++) { ar.c[j,i_] = v*ar.c[j,i_]; } for(i_=0; i_<=nvars;i_++) { ar.c[i_,j] = v*ar.c[i_,j]; } } }
/************************************************************************* Linear regression Variant of LRBuild which uses vector of standatd deviations (errors in function values). INPUT PARAMETERS: XY - training set, array [0..NPoints-1,0..NVars]: * NVars columns - independent variables * last column - dependent variable S - standard deviations (errors in function values) array[0..NPoints-1], S[i]>0. NPoints - training set size, NPoints>NVars+1 NVars - number of independent variables OUTPUT PARAMETERS: Info - return code: * -255, in case of unknown internal error * -4, if internal SVD subroutine haven't converged * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1). * -2, if S[I]<=0 * 1, if subroutine successfully finished LM - linear model in the ALGLIB format. Use subroutines of this unit to work with the model. AR - additional results -- ALGLIB -- Copyright 02.08.2008 by Bochkanov Sergey *************************************************************************/ public static void lrbuilds(double[,] xy, double[] s, int npoints, int nvars, ref int info, linearmodel lm, lrreport ar) { double[,] xyi = new double[0,0]; double[] x = new double[0]; double[] means = new double[0]; double[] sigmas = new double[0]; int i = 0; int j = 0; double v = 0; int offs = 0; double mean = 0; double variance = 0; double skewness = 0; double kurtosis = 0; int i_ = 0; info = 0; // // Test parameters // if( npoints<=nvars+1 || nvars<1 ) { info = -1; return; } // // Copy data, add one more column (constant term) // xyi = new double[npoints-1+1, nvars+1+1]; for(i=0; i<=npoints-1; i++) { for(i_=0; i_<=nvars-1;i_++) { xyi[i,i_] = xy[i,i_]; } xyi[i,nvars] = 1; xyi[i,nvars+1] = xy[i,nvars]; } // // Standartization // x = new double[npoints-1+1]; means = new double[nvars-1+1]; sigmas = new double[nvars-1+1]; for(j=0; j<=nvars-1; j++) { for(i_=0; i_<=npoints-1;i_++) { x[i_] = xy[i_,j]; } basestat.samplemoments(x, npoints, ref mean, ref variance, ref skewness, ref kurtosis); means[j] = mean; sigmas[j] = Math.Sqrt(variance); if( (double)(sigmas[j])==(double)(0) ) { sigmas[j] = 1; } for(i=0; i<=npoints-1; i++) { xyi[i,j] = (xyi[i,j]-means[j])/sigmas[j]; } } // // Internal processing // lrinternal(xyi, s, npoints, nvars+1, ref info, lm, ar); if( info<0 ) { return; } // // Un-standartization // offs = (int)Math.Round(lm.w[3]); for(j=0; j<=nvars-1; j++) { // // Constant term is updated (and its covariance too, // since it gets some variance from J-th component) // lm.w[offs+nvars] = lm.w[offs+nvars]-lm.w[offs+j]*means[j]/sigmas[j]; v = means[j]/sigmas[j]; for(i_=0; i_<=nvars;i_++) { ar.c[nvars,i_] = ar.c[nvars,i_] - v*ar.c[j,i_]; } for(i_=0; i_<=nvars;i_++) { ar.c[i_,nvars] = ar.c[i_,nvars] - v*ar.c[i_,j]; } // // J-th term is updated // lm.w[offs+j] = lm.w[offs+j]/sigmas[j]; v = 1/sigmas[j]; for(i_=0; i_<=nvars;i_++) { ar.c[j,i_] = v*ar.c[j,i_]; } for(i_=0; i_<=nvars;i_++) { ar.c[i_,j] = v*ar.c[i_,j]; } } }
/************************************************************************* * Internal linear regression subroutine *************************************************************************/ private static void lrinternal(ref double[,] xy, ref double[] s, int npoints, int nvars, ref int info, ref linearmodel lm, ref lrreport ar) { double[,] a = new double[0, 0]; double[,] u = new double[0, 0]; double[,] vt = new double[0, 0]; double[,] vm = new double[0, 0]; double[,] xym = new double[0, 0]; double[] b = new double[0]; double[] sv = new double[0]; double[] t = new double[0]; double[] svi = new double[0]; double[] work = new double[0]; int i = 0; int j = 0; int k = 0; int ncv = 0; int na = 0; int nacv = 0; double r = 0; double p = 0; double epstol = 0; lrreport ar2 = new lrreport(); int offs = 0; linearmodel tlm = new linearmodel(); int i_ = 0; int i1_ = 0; epstol = 1000; // // Check for errors in data // if (npoints < nvars | nvars < 1) { info = -1; return; } for (i = 0; i <= npoints - 1; i++) { if (s[i] <= 0) { info = -2; return; } } info = 1; // // Create design matrix // a = new double[npoints - 1 + 1, nvars - 1 + 1]; b = new double[npoints - 1 + 1]; for (i = 0; i <= npoints - 1; i++) { r = 1 / s[i]; for (i_ = 0; i_ <= nvars - 1; i_++) { a[i, i_] = r * xy[i, i_]; } b[i] = xy[i, nvars] / s[i]; } // // Allocate W: // W[0] array size // W[1] version number, 0 // W[2] NVars (minus 1, to be compatible with external representation) // W[3] coefficients offset // lm.w = new double[4 + nvars - 1 + 1]; offs = 4; lm.w[0] = 4 + nvars; lm.w[1] = lrvnum; lm.w[2] = nvars - 1; lm.w[3] = offs; // // Solve problem using SVD: // // 0. check for degeneracy (different types) // 1. A = U*diag(sv)*V' // 2. T = b'*U // 3. w = SUM((T[i]/sv[i])*V[..,i]) // 4. cov(wi,wj) = SUM(Vji*Vjk/sv[i]^2,K=1..M) // // see $15.4 of "Numerical Recipes in C" for more information // t = new double[nvars - 1 + 1]; svi = new double[nvars - 1 + 1]; ar.c = new double[nvars - 1 + 1, nvars - 1 + 1]; vm = new double[nvars - 1 + 1, nvars - 1 + 1]; if (!svd.rmatrixsvd(a, npoints, nvars, 1, 1, 2, ref sv, ref u, ref vt)) { info = -4; return; } if (sv[0] <= 0) { // // Degenerate case: zero design matrix. // for (i = offs; i <= offs + nvars - 1; i++) { lm.w[i] = 0; } ar.rmserror = lrrmserror(ref lm, ref xy, npoints); ar.avgerror = lravgerror(ref lm, ref xy, npoints); ar.avgrelerror = lravgrelerror(ref lm, ref xy, npoints); ar.cvrmserror = ar.rmserror; ar.cvavgerror = ar.avgerror; ar.cvavgrelerror = ar.avgrelerror; ar.ncvdefects = 0; ar.cvdefects = new int[nvars - 1 + 1]; ar.c = new double[nvars - 1 + 1, nvars - 1 + 1]; for (i = 0; i <= nvars - 1; i++) { for (j = 0; j <= nvars - 1; j++) { ar.c[i, j] = 0; } } return; } if (sv[nvars - 1] <= epstol * AP.Math.MachineEpsilon * sv[0]) { // // Degenerate case, non-zero design matrix. // // We can leave it and solve task in SVD least squares fashion. // Solution and covariance matrix will be obtained correctly, // but CV error estimates - will not. It is better to reduce // it to non-degenerate task and to obtain correct CV estimates. // for (k = nvars; k >= 1; k--) { if (sv[k - 1] > epstol * AP.Math.MachineEpsilon * sv[0]) { // // Reduce // xym = new double[npoints - 1 + 1, k + 1]; for (i = 0; i <= npoints - 1; i++) { for (j = 0; j <= k - 1; j++) { r = 0.0; for (i_ = 0; i_ <= nvars - 1; i_++) { r += xy[i, i_] * vt[j, i_]; } xym[i, j] = r; } xym[i, k] = xy[i, nvars]; } // // Solve // lrinternal(ref xym, ref s, npoints, k, ref info, ref tlm, ref ar2); if (info != 1) { return; } // // Convert back to un-reduced format // for (j = 0; j <= nvars - 1; j++) { lm.w[offs + j] = 0; } for (j = 0; j <= k - 1; j++) { r = tlm.w[offs + j]; i1_ = (0) - (offs); for (i_ = offs; i_ <= offs + nvars - 1; i_++) { lm.w[i_] = lm.w[i_] + r * vt[j, i_ + i1_]; } } ar.rmserror = ar2.rmserror; ar.avgerror = ar2.avgerror; ar.avgrelerror = ar2.avgrelerror; ar.cvrmserror = ar2.cvrmserror; ar.cvavgerror = ar2.cvavgerror; ar.cvavgrelerror = ar2.cvavgrelerror; ar.ncvdefects = ar2.ncvdefects; ar.cvdefects = new int[nvars - 1 + 1]; for (j = 0; j <= ar.ncvdefects - 1; j++) { ar.cvdefects[j] = ar2.cvdefects[j]; } ar.c = new double[nvars - 1 + 1, nvars - 1 + 1]; work = new double[nvars + 1]; blas.matrixmatrixmultiply(ref ar2.c, 0, k - 1, 0, k - 1, false, ref vt, 0, k - 1, 0, nvars - 1, false, 1.0, ref vm, 0, k - 1, 0, nvars - 1, 0.0, ref work); blas.matrixmatrixmultiply(ref vt, 0, k - 1, 0, nvars - 1, true, ref vm, 0, k - 1, 0, nvars - 1, false, 1.0, ref ar.c, 0, nvars - 1, 0, nvars - 1, 0.0, ref work); return; } } info = -255; return; } for (i = 0; i <= nvars - 1; i++) { if (sv[i] > epstol * AP.Math.MachineEpsilon * sv[0]) { svi[i] = 1 / sv[i]; } else { svi[i] = 0; } } for (i = 0; i <= nvars - 1; i++) { t[i] = 0; } for (i = 0; i <= npoints - 1; i++) { r = b[i]; for (i_ = 0; i_ <= nvars - 1; i_++) { t[i_] = t[i_] + r * u[i, i_]; } } for (i = 0; i <= nvars - 1; i++) { lm.w[offs + i] = 0; } for (i = 0; i <= nvars - 1; i++) { r = t[i] * svi[i]; i1_ = (0) - (offs); for (i_ = offs; i_ <= offs + nvars - 1; i_++) { lm.w[i_] = lm.w[i_] + r * vt[i, i_ + i1_]; } } for (j = 0; j <= nvars - 1; j++) { r = svi[j]; for (i_ = 0; i_ <= nvars - 1; i_++) { vm[i_, j] = r * vt[j, i_]; } } for (i = 0; i <= nvars - 1; i++) { for (j = i; j <= nvars - 1; j++) { r = 0.0; for (i_ = 0; i_ <= nvars - 1; i_++) { r += vm[i, i_] * vm[j, i_]; } ar.c[i, j] = r; ar.c[j, i] = r; } } // // Leave-1-out cross-validation error. // // NOTATIONS: // A design matrix // A*x = b original linear least squares task // U*S*V' SVD of A // ai i-th row of the A // bi i-th element of the b // xf solution of the original LLS task // // Cross-validation error of i-th element from a sample is // calculated using following formula: // // ERRi = ai*xf - (ai*xf-bi*(ui*ui'))/(1-ui*ui') (1) // // This formula can be derived from normal equations of the // original task // // (A'*A)x = A'*b (2) // // by applying modification (zeroing out i-th row of A) to (2): // // (A-ai)'*(A-ai) = (A-ai)'*b // // and using Sherman-Morrison formula for updating matrix inverse // // NOTE 1: b is not zeroed out since it is much simpler and // does not influence final result. // // NOTE 2: some design matrices A have such ui that 1-ui*ui'=0. // Formula (1) can't be applied for such cases and they are skipped // from CV calculation (which distorts resulting CV estimate). // But from the properties of U we can conclude that there can // be no more than NVars such vectors. Usually // NVars << NPoints, so in a normal case it only slightly // influences result. // ncv = 0; na = 0; nacv = 0; ar.rmserror = 0; ar.avgerror = 0; ar.avgrelerror = 0; ar.cvrmserror = 0; ar.cvavgerror = 0; ar.cvavgrelerror = 0; ar.ncvdefects = 0; ar.cvdefects = new int[nvars - 1 + 1]; for (i = 0; i <= npoints - 1; i++) { // // Error on a training set // i1_ = (offs) - (0); r = 0.0; for (i_ = 0; i_ <= nvars - 1; i_++) { r += xy[i, i_] * lm.w[i_ + i1_]; } ar.rmserror = ar.rmserror + AP.Math.Sqr(r - xy[i, nvars]); ar.avgerror = ar.avgerror + Math.Abs(r - xy[i, nvars]); if (xy[i, nvars] != 0) { ar.avgrelerror = ar.avgrelerror + Math.Abs((r - xy[i, nvars]) / xy[i, nvars]); na = na + 1; } // // Error using fast leave-one-out cross-validation // p = 0.0; for (i_ = 0; i_ <= nvars - 1; i_++) { p += u[i, i_] * u[i, i_]; } if (p > 1 - epstol * AP.Math.MachineEpsilon) { ar.cvdefects[ar.ncvdefects] = i; ar.ncvdefects = ar.ncvdefects + 1; continue; } r = s[i] * (r / s[i] - b[i] * p) / (1 - p); ar.cvrmserror = ar.cvrmserror + AP.Math.Sqr(r - xy[i, nvars]); ar.cvavgerror = ar.cvavgerror + Math.Abs(r - xy[i, nvars]); if (xy[i, nvars] != 0) { ar.cvavgrelerror = ar.cvavgrelerror + Math.Abs((r - xy[i, nvars]) / xy[i, nvars]); nacv = nacv + 1; } ncv = ncv + 1; } if (ncv == 0) { // // Something strange: ALL ui are degenerate. // Unexpected... // info = -255; return; } ar.rmserror = Math.Sqrt(ar.rmserror / npoints); ar.avgerror = ar.avgerror / npoints; if (na != 0) { ar.avgrelerror = ar.avgrelerror / na; } ar.cvrmserror = Math.Sqrt(ar.cvrmserror / ncv); ar.cvavgerror = ar.cvavgerror / ncv; if (nacv != 0) { ar.cvavgrelerror = ar.cvavgrelerror / nacv; } }
/************************************************************************* * Like LRBuildS, but builds model * * Y = A(0)*X[0] + ... + A(N-1)*X[N-1] * * i.e. with zero constant term. * * -- ALGLIB -- * Copyright 30.10.2008 by Bochkanov Sergey *************************************************************************/ public static void lrbuildzs(ref double[,] xy, ref double[] s, int npoints, int nvars, ref int info, ref linearmodel lm, ref lrreport ar) { double[,] xyi = new double[0, 0]; double[] x = new double[0]; double[] c = new double[0]; int i = 0; int j = 0; double v = 0; int offs = 0; double mean = 0; double variance = 0; double skewness = 0; double kurtosis = 0; int i_ = 0; // // Test parameters // if (npoints <= nvars + 1 | nvars < 1) { info = -1; return; } // // Copy data, add one more column (constant term) // xyi = new double[npoints - 1 + 1, nvars + 1 + 1]; for (i = 0; i <= npoints - 1; i++) { for (i_ = 0; i_ <= nvars - 1; i_++) { xyi[i, i_] = xy[i, i_]; } xyi[i, nvars] = 0; xyi[i, nvars + 1] = xy[i, nvars]; } // // Standartization: unusual scaling // x = new double[npoints - 1 + 1]; c = new double[nvars - 1 + 1]; for (j = 0; j <= nvars - 1; j++) { for (i_ = 0; i_ <= npoints - 1; i_++) { x[i_] = xy[i_, j]; } descriptivestatistics.calculatemoments(ref x, npoints, ref mean, ref variance, ref skewness, ref kurtosis); if (Math.Abs(mean) > Math.Sqrt(variance)) { // // variation is relatively small, it is better to // bring mean value to 1 // c[j] = mean; } else { // // variation is large, it is better to bring variance to 1 // if (variance == 0) { variance = 1; } c[j] = Math.Sqrt(variance); } for (i = 0; i <= npoints - 1; i++) { xyi[i, j] = xyi[i, j] / c[j]; } } // // Internal processing // lrinternal(ref xyi, ref s, npoints, nvars + 1, ref info, ref lm, ref ar); if (info < 0) { return; } // // Un-standartization // offs = (int)Math.Round(lm.w[3]); for (j = 0; j <= nvars - 1; j++) { // // J-th term is updated // lm.w[offs + j] = lm.w[offs + j] / c[j]; v = 1 / c[j]; for (i_ = 0; i_ <= nvars; i_++) { ar.c[j, i_] = v * ar.c[j, i_]; } for (i_ = 0; i_ <= nvars; i_++) { ar.c[i_, j] = v * ar.c[i_, j]; } } }
/************************************************************************* * Linear regression * * Variant of LRBuild which uses vector of standatd deviations (errors in * function values). * * INPUT PARAMETERS: * XY - training set, array [0..NPoints-1,0..NVars]: * NVars columns - independent variables * last column - dependent variable * S - standard deviations (errors in function values) * array[0..NPoints-1], S[i]>0. * NPoints - training set size, NPoints>NVars+1 * NVars - number of independent variables * * OUTPUT PARAMETERS: * Info - return code: * -255, in case of unknown internal error * -4, if internal SVD subroutine haven't converged * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1). * -2, if S[I]<=0 * 1, if subroutine successfully finished * LM - linear model in the ALGLIB format. Use subroutines of * this unit to work with the model. * AR - additional results * * * -- ALGLIB -- * Copyright 02.08.2008 by Bochkanov Sergey *************************************************************************/ public static void lrbuilds(ref double[,] xy, ref double[] s, int npoints, int nvars, ref int info, ref linearmodel lm, ref lrreport ar) { double[,] xyi = new double[0, 0]; double[] x = new double[0]; double[] means = new double[0]; double[] sigmas = new double[0]; int i = 0; int j = 0; double v = 0; int offs = 0; double mean = 0; double variance = 0; double skewness = 0; double kurtosis = 0; int i_ = 0; // // Test parameters // if (npoints <= nvars + 1 | nvars < 1) { info = -1; return; } // // Copy data, add one more column (constant term) // xyi = new double[npoints - 1 + 1, nvars + 1 + 1]; for (i = 0; i <= npoints - 1; i++) { for (i_ = 0; i_ <= nvars - 1; i_++) { xyi[i, i_] = xy[i, i_]; } xyi[i, nvars] = 1; xyi[i, nvars + 1] = xy[i, nvars]; } // // Standartization // x = new double[npoints - 1 + 1]; means = new double[nvars - 1 + 1]; sigmas = new double[nvars - 1 + 1]; for (j = 0; j <= nvars - 1; j++) { for (i_ = 0; i_ <= npoints - 1; i_++) { x[i_] = xy[i_, j]; } descriptivestatistics.calculatemoments(ref x, npoints, ref mean, ref variance, ref skewness, ref kurtosis); means[j] = mean; sigmas[j] = Math.Sqrt(variance); if (sigmas[j] == 0) { sigmas[j] = 1; } for (i = 0; i <= npoints - 1; i++) { xyi[i, j] = (xyi[i, j] - means[j]) / sigmas[j]; } } // // Internal processing // lrinternal(ref xyi, ref s, npoints, nvars + 1, ref info, ref lm, ref ar); if (info < 0) { return; } // // Un-standartization // offs = (int)Math.Round(lm.w[3]); for (j = 0; j <= nvars - 1; j++) { // // Constant term is updated (and its covariance too, // since it gets some variance from J-th component) // lm.w[offs + nvars] = lm.w[offs + nvars] - lm.w[offs + j] * means[j] / sigmas[j]; v = means[j] / sigmas[j]; for (i_ = 0; i_ <= nvars; i_++) { ar.c[nvars, i_] = ar.c[nvars, i_] - v * ar.c[j, i_]; } for (i_ = 0; i_ <= nvars; i_++) { ar.c[i_, nvars] = ar.c[i_, nvars] - v * ar.c[i_, j]; } // // J-th term is updated // lm.w[offs + j] = lm.w[offs + j] / sigmas[j]; v = 1 / sigmas[j]; for (i_ = 0; i_ <= nvars; i_++) { ar.c[j, i_] = v * ar.c[j, i_]; } for (i_ = 0; i_ <= nvars; i_++) { ar.c[i_, j] = v * ar.c[i_, j]; } } }
public override alglib.apobject make_copy() { lrreport _result = new lrreport(); _result.c = (double[,])c.Clone(); _result.rmserror = rmserror; _result.avgerror = avgerror; _result.avgrelerror = avgrelerror; _result.cvrmserror = cvrmserror; _result.cvavgerror = cvavgerror; _result.cvavgrelerror = cvavgrelerror; _result.ncvdefects = ncvdefects; _result.cvdefects = (int[])cvdefects.Clone(); return _result; }