public FullyConnected(uint kernel_, calcMode.type mode_ = calcMode.type.CPU, batchNormType.type bnorm_ = batchNormType.type.none) { kernel = kernel_; bnorm = new batchNormType(bnorm_); mode = new calcMode(mode_); }
public Deconvolution(uint kernel_, calcMode.type mode_ = calcMode.type.CPU, batchNormType.type bnorm_ = batchNormType.type.none) { kernel = kernel_; mode = new calcMode(mode_); bnorm = new batchNormType(bnorm_); }
public float batchNormLr = 0.001F; ///< Learning rate for batch norm coef. Optional parameter [0..) public Convolution(uint kernel_, active.type act_ = active.type.relu, optimizer.type opt_ = optimizer.type.adam, float dropOut_ = 0.0F, batchNormType.type bnorm_ = batchNormType.type.none, uint fWidth_ = 3, uint fHeight_ = 3, int padding_ = 0, uint stride_ = 1, uint dilate_ = 1, calcMode.type mode_ = calcMode.type.CPU, uint gpuDeviceId_ = 0) { kernel = kernel_; act = new active(act_); opt = new optimizer(opt_); dropOut = dropOut_; bnorm = new batchNormType(bnorm_); fWidth = fWidth_; fHeight = fHeight_; padding = padding_; stride = stride_; dilate = dilate_; mode = new calcMode(mode_); gpuDeviceId = gpuDeviceId_; }
public Convolution(uint filters_, int padding_ = 0, batchNormType.type bnorm_ = batchNormType.type.none) { filters = filters_; padding = padding_; bnorm = new batchNormType(bnorm_); }
public FullyConnected(uint units_, calcMode.type mode_ = calcMode.type.CPU, batchNormType.type bnorm_ = batchNormType.type.none) { units = units_; bnorm = new batchNormType(bnorm_); mode = new calcMode(mode_); }
public Deconvolution(uint filters_, calcMode.type mode_ = calcMode.type.CPU, batchNormType.type bnorm_ = batchNormType.type.none) { filters = filters_; mode = new calcMode(mode_); bnorm = new batchNormType(bnorm_); }
public Convolution(uint kernel_, int padding_ = 0, calcMode.type mode_ = calcMode.type.CPU, batchNormType.type bnorm_ = batchNormType.type.none) { kernel = kernel_; padding = padding_; mode = new calcMode(mode_); bnorm = new batchNormType(bnorm_); }
public Convolution(uint filters_, int padding_ = 0, calcMode.type mode_ = calcMode.type.CPU, batchNormType.type bnorm_ = batchNormType.type.none) { filters = filters_; padding = padding_; mode = new calcMode(mode_); bnorm = new batchNormType(bnorm_); }
public float batchNormLr = 0.001F; ///< Learning rate for batch norm coef. Optional parameter [0..) public FullyConnected(uint units_, active.type act_ = active.type.relu, optimizer.type opt_ = optimizer.type.adam, float dropOut_ = 0.0f, batchNormType.type bnorm_ = batchNormType.type.none, uint gpuDeviceId_ = 0) { units = units_; act = new active(act_); opt = new optimizer(opt_); dropOut = dropOut_; bnorm = new batchNormType(bnorm_); gpuDeviceId = gpuDeviceId_; }
public float batchNormLr = 0.001F; ///< Learning rate for batch norm coef. Optional parameter [0..) public FullyConnected(uint kernel_, active.type act_ = active.type.relu, optimizer.type opt_ = optimizer.type.adam, float dropOut_ = 0.0f, batchNormType.type bnorm_ = batchNormType.type.none, calcMode.type mode_ = calcMode.type.CPU, uint gpuDeviceId_ = 0) { kernel = kernel_; act = new active(act_); opt = new optimizer(opt_); dropOut = dropOut_; bnorm = new batchNormType(bnorm_); mode = new calcMode(mode_); gpuDeviceId = gpuDeviceId_; }
public float batchNormLr = 0.001F; ///< Learning rate for batch norm coef. Optional parameter [0..) public Deconvolution(uint filters_, active.type act_ = active.type.relu, optimizer.type opt_ = optimizer.type.adam, float dropOut_ = 0.0F, batchNormType.type bnorm_ = batchNormType.type.none, uint fWidth_ = 3, uint fHeight_ = 3, uint stride_ = 1, uint gpuDeviceId_ = 0) { filters = filters_; act = new active(act_); opt = new optimizer(opt_); dropOut = dropOut_; bnorm = new batchNormType(bnorm_); fWidth = fWidth_; fHeight = fHeight_; stride = stride_; gpuDeviceId = gpuDeviceId_; }
public Deconvolution(uint filters_, batchNormType.type bnorm_ = batchNormType.type.none) { filters = filters_; bnorm = new batchNormType(bnorm_); }