public void CumulativeExactTest()
        {
            // example from https://onlinecourses.science.psu.edu/stat414/node/319

            double[] ranks =
            {
                22,  2, 13, 24, 16, 15, 25, 10,  9, 11,  5,
                17, 12, 20, 14, 30,  8,  6, 26, 19, 29, 27,3, 28,
                7,  21, 23,  1, 18, 4
            };

            WilcoxonDistribution target = new WilcoxonDistribution(ranks);

            Assert.AreEqual(232.5, target.Mean);
            Assert.AreEqual(2363.75, target.Variance);
            Assert.AreEqual(Math.Sqrt(2363.75), target.StandardDeviation);

            double actual   = target.DistributionFunction(200);
            double expected = 0.2546;

            Assert.AreEqual(expected, actual, 1e-2);

            double inv = target.InverseDistributionFunction(actual);

            Assert.AreEqual(200, inv);
        }
Пример #2
0
        public void ConstructorTest2()
        {
            double[] ranks = { 1, 2, 3, 4, 5.5, 5.5, 7, 8, 9, 10, 11, 12 };

            var W = new WilcoxonDistribution(ranks, forceExact: true);

            double mean   = W.Mean;                                    // 39
            double median = W.Median;                                  // 39
            double var    = W.Variance;                                // 162.5

            double cdf  = W.DistributionFunction(w: 42);               // 0.582763671875
            double pdf  = W.ProbabilityDensityFunction(w: 42);         // 0.014404296875
            double lpdf = W.LogProbabilityDensityFunction(w: 42);      // -4.2402287228136233

            double ccdf  = W.ComplementaryDistributionFunction(x: 42); // 0.417236328125
            double icdf  = W.InverseDistributionFunction(p: cdf);      // 41.965447500067114
            double icdf2 = W.InverseDistributionFunction(p: 0.5);      // 39.000000487005138

            double hf  = W.HazardFunction(x: 42);                      // 0.03452311293153891
            double chf = W.CumulativeHazardFunction(x: 42);            // 0.87410248360375287

            string str = W.ToString();                                 // "W+(x; R)"

            Assert.AreEqual(39.0, mean);
            Assert.AreEqual(39.0, median, 1e-6);
            Assert.AreEqual(162.5, var);
            Assert.AreEqual(0.87410248360375287, chf);
            Assert.AreEqual(0.582763671875, cdf);
            Assert.AreEqual(0.014404296875, pdf);
            Assert.AreEqual(-4.2402287228136233, lpdf);
            Assert.AreEqual(0.03452311293153891, hf);
            Assert.AreEqual(0.417236328125, ccdf);
            Assert.AreEqual(42, icdf, 0.05);
            Assert.AreEqual("W+(x; R)", str);
        }
Пример #3
0
        public void ConstructorTest()
        {
            double[] ranks = { 1, 2, 3, 4, 5.5, 5.5, 7, 8, 9, 10, 11, 12 };

            var W = new WilcoxonDistribution(ranks);

            double mean   = W.Mean;                                    // 39.0
            double median = W.Median;                                  // 38.5
            double var    = W.Variance;                                // 162.5

            double cdf  = W.DistributionFunction(w: 42);               // 0.60817384423279575
            double pdf  = W.ProbabilityDensityFunction(w: 42);         // 0.38418508862319295
            double lpdf = W.LogProbabilityDensityFunction(w: 42);      // 0.38418508862319295

            double ccdf  = W.ComplementaryDistributionFunction(x: 42); // 0.39182615576720425
            double icdf  = W.InverseDistributionFunction(p: cdf);      // 42
            double icdf2 = W.InverseDistributionFunction(p: 0.5);      // 42

            double hf  = W.HazardFunction(x: 42);                      // 0.98049883339449373
            double chf = W.CumulativeHazardFunction(x: 42);            // 0.936937017743799

            string str = W.ToString();                                 // "W+(x; R)"

            Assert.AreEqual(39.0, mean);
            Assert.AreEqual(38.5, median, 1e-6);
            Assert.AreEqual(162.5, var);
            Assert.AreEqual(0.936937017743799, chf);
            Assert.AreEqual(0.60817384423279575, cdf);
            Assert.AreEqual(0.38418508862319295, pdf);
            Assert.AreEqual(-0.95663084089698047, lpdf);
            Assert.AreEqual(0.98049883339449373, hf);
            Assert.AreEqual(0.39182615576720425, ccdf);
            Assert.AreEqual(42, icdf, 1e-6);
            Assert.AreEqual("W+(x; R)", str);
        }
        public void icdf()
        {
            var dist = new WilcoxonDistribution(1);

            double[] percentiles = Vector.Range(0.0, 1.0, stepSize: 0.1);
            for (int i = 0; i < percentiles.Length; i++)
            {
                double x      = percentiles[i];
                double icdf   = dist.InverseDistributionFunction(x);
                double cdf    = dist.DistributionFunction(icdf);
                double iicdf  = dist.InverseDistributionFunction(cdf);
                double iiicdf = dist.DistributionFunction(iicdf);

                Assert.AreEqual(iicdf, icdf, 1e-5);
                Assert.AreEqual(x, cdf, 1e-5);
                Assert.AreEqual(iiicdf, cdf, 1e-5);
            }
        }
        public void ConstructorTest2()
        {
            double[] ranks = { 1, 2, 3, 4, 5.5, 5.5, 7, 8, 9, 10, 11, 12 };

            var W = new WilcoxonDistribution(ranks, exact: true);

            double mean   = W.Mean;                                    // 39
            double median = W.Median;                                  // 39
            double var    = W.Variance;                                // 162.5

            double cdf  = W.DistributionFunction(x: 42);               // 0.582763671875
            double pdf  = W.ProbabilityDensityFunction(x: 42);         // 0.014404296875
            double lpdf = W.LogProbabilityDensityFunction(x: 42);      // -4.2402287228136233

            double ccdf  = W.ComplementaryDistributionFunction(x: 42); // 0.417236328125
            double icdf  = W.InverseDistributionFunction(p: cdf);      // 41.965447500067114
            double icdf2 = W.InverseDistributionFunction(p: 0.5);      // 39.000000487005138

            double hf  = W.HazardFunction(x: 42);                      // 0.03452311293153891
            double chf = W.CumulativeHazardFunction(x: 42);            // 0.87410248360375287

            string str = W.ToString();                                 // "W+(x; R)"

            Assert.AreEqual(39.0, mean);
            Assert.AreEqual(39.0, median, 1e-6);
            Assert.AreEqual(162.5, var);
            Assert.AreEqual(0.87410248360375287, chf);
            Assert.AreEqual(0.59716796875, cdf, 1e-5);
            Assert.AreEqual(0.014404296875, pdf, 1e-8);
            Assert.AreEqual(-4.2402287228136233, lpdf);
            Assert.AreEqual(0.03452311293153891, hf);
            Assert.AreEqual(0.417236328125, ccdf);
            Assert.AreEqual(42.5, icdf, 0.05);
            Assert.AreEqual("W+(x; R)", str);

            var range1 = W.GetRange(0.95);
            var range2 = W.GetRange(0.99);
            var range3 = W.GetRange(0.01);

            Assert.AreEqual(17.999999736111114, range1.Min, 1e-6);
            Assert.AreEqual(60.000000315408002, range1.Max, 1e-6);
            Assert.AreEqual(10.000000351098127, range2.Min, 1e-6);
            Assert.AreEqual(67.99999981945885, range2.Max, 1e-6);
            Assert.AreEqual(10.000000351098119, range3.Min, 1e-6);
            Assert.AreEqual(67.99999981945885, range3.Max, 1e-6);
        }
        public void CumulativeTest()
        {
            // Example from https://onlinecourses.science.psu.edu/stat414/node/319

            double[] ranks = { 1, 2, 3 };

            WilcoxonDistribution target = new WilcoxonDistribution(ranks);

            double[] probabilities = { 1 / 8.0, 1 / 8.0, 1 / 8.0, 2 / 8.0, 1 / 8.0, 1 / 8.0, 1 / 8.0 };
            double[] expected      = Accord.Math.Matrix.CumulativeSum(probabilities);

            for (int i = 0; i < expected.Length; i++)
            {
                // P(W<=i)
                double actual = target.DistributionFunction(i);
                Assert.AreEqual(expected[i], actual);
            }
        }
        public void ApproximationTest()
        {
            double[] m = Matrix.Magic(5).Reshape().Get(0, 20);

            double[] samples = m.Rank();

            var exact  = new WilcoxonDistribution(samples, exact: true);
            var approx = new WilcoxonDistribution(samples, exact: false);

            var nd = NormalDistribution.Estimate(exact.Table);

            Assert.AreEqual(nd.Mean, exact.Mean, 1e-10);
            Assert.AreEqual(nd.Variance, exact.Variance, 1e-3);

            foreach (double x in Vector.Range(0, 100))
            {
                double e = approx.DistributionFunction(x);
                double a = exact.DistributionFunction(x);

                if (e > 0.25)
                {
                    Assert.AreEqual(e, a, 0.1);
                }
                else
                {
                    Assert.AreEqual(e, a, 0.01);
                }
            }

            foreach (double x in Vector.Range(0, 100))
            {
                double e = approx.ComplementaryDistributionFunction(x);
                double a = exact.ComplementaryDistributionFunction(x);

                if (e > 0.25)
                {
                    Assert.AreEqual(e, a, 0.1);
                }
                else
                {
                    Assert.AreEqual(e, a, 0.01);
                }
            }
        }
        public void ConstructorTest()
        {
            double[] ranks = { 1, 2, 3, 4, 5.5, 5.5, 7, 8, 9, 10, 11, 12 };

            var W = new WilcoxonDistribution(ranks);

            double mean   = W.Mean;                                    // 39.0
            double median = W.Median;                                  // 38.5
            double var    = W.Variance;                                // 162.5
            double mode   = W.Mode;                                    // 39.0

            double cdf  = W.DistributionFunction(x: 42);               // 0.60817384423279575
            double pdf  = W.ProbabilityDensityFunction(x: 42);         // 0.38418508862319295
            double lpdf = W.LogProbabilityDensityFunction(x: 42);      // 0.38418508862319295

            double ccdf  = W.ComplementaryDistributionFunction(x: 42); // 0.39182615576720425
            double icdf  = W.InverseDistributionFunction(p: cdf);      // 42
            double icdf2 = W.InverseDistributionFunction(p: 0.5);      // 42

            double hf  = W.HazardFunction(x: 42);                      // 0.98049883339449373
            double chf = W.CumulativeHazardFunction(x: 42);            // 0.936937017743799

            string str = W.ToString();                                 // "W+(x; R)"

            Assert.AreEqual(39.0, mean);
            Assert.AreEqual(39, median, 1e-6);
            Assert.AreEqual(39.0, mode, 1e-8);
            Assert.AreEqual(162.5, var);
            Assert.AreEqual(0.87410248360375287, chf, 1e-8);
            Assert.AreEqual(0.59716796875, cdf, 1e-8);
            Assert.AreEqual(0.014404296875, pdf, 1e-8);
            Assert.AreEqual(-4.2402287228136233, lpdf, 1e-8);
            Assert.AreEqual(0.03452311293153891, hf, 1e-8);
            Assert.AreEqual(0.417236328125, ccdf, 1e-8);
            Assert.AreEqual(42.5, icdf, 0.05);
            Assert.AreEqual("W+(x; R)", str);

            Assert.AreEqual(0, W.Support.Min);
            Assert.AreEqual(double.PositiveInfinity, W.Support.Max);

            Assert.AreEqual(W.InverseDistributionFunction(0), W.Support.Min);
            Assert.AreEqual(W.InverseDistributionFunction(1), W.Support.Max);
        }