/// <summary> /// Decodes the predictions. /// </summary> /// <param name="preds">The preds.</param> /// <param name="top">The top.</param> /// <returns></returns> public ImageNetPrediction[] DecodePredictions(NDarray preds, int top = 3) { Dictionary <string, object> parameters = new Dictionary <string, object>(); parameters["preds"] = preds; parameters["top"] = top; var predobj = (PyObject)InvokeStaticMethod(caller, "decode_predictions", parameters); var d = predobj.ToString(); var list = TupleSolver.TupleToList <object>(predobj[0]); List <ImageNetPrediction> predictions = new List <ImageNetPrediction>(); for (int i = 0; i < list.Length; i = i++) { ImageNetPrediction pred = new ImageNetPrediction() { WordID = list[i].ToString(), Word = list[i + 1].ToString(), PredictedValue = Convert.ToSingle(list[i + 2].ToString(), CultureInfo.InvariantCulture), }; i = i + 3; predictions.Add(pred); } return(predictions.ToArray()); }
/// <summary> /// Loads the data. /// </summary> /// <param name="path">The path. to load text</param> /// <param name="num_words">The number words.</param> /// <param name="skip_top">Skip top number of records.</param> /// <param name="maxlen">The max length.</param> /// <param name="test_split">The test split.</param> /// <param name="seed">The seed.</param> /// <param name="start_char">The start character.</param> /// <param name="oov_char">The oov character.</param> /// <param name="index_from">The index from.</param> /// <returns></returns> public static ((NDarray, NDarray), (NDarray, NDarray)) LoadData(string path = "reuters.npz", int?num_words = null, int skip_top = 0, int?maxlen = null, float test_split = 0.2f, int seed = 113, int start_char = 1, int oov_char = 2, int index_from = 3) { var dlist = TupleSolver.TupleToList(Instance.keras.datasets.reuters.load_data(path: path, num_words: num_words, skip_top: skip_top, maxlen: maxlen, test_split: test_split, seed: seed, start_char: start_char, oov_char: oov_char, index_from: index_from)); return((dlist[0], dlist[1]), (dlist[2], dlist[3])); }
public static (PyObject, string) NPRandom(int?seed = null) { Dictionary <string, object> parameters = new Dictionary <string, object>(); parameters["seed"] = seed; var list = TupleSolver.TupleToList <object>((PyObject)InvokeStaticMethod(caller.seeding, "np_random", parameters)); return((PyObject)list[0], list[1].ToString()); }
/// <summary> /// Decodes the predictions. /// </summary> /// <param name="preds">The preds.</param> /// <param name="top">The top.</param> /// <returns></returns> public static ImageNetPrediction[] DecodePredictions(NDarray preds, int top = 3) { Dictionary <string, object> parameters = new Dictionary <string, object>(); parameters["preds"] = preds; parameters["top"] = top; var predobj = (PyObject)InvokeStaticMethod(Instance.keras.applications.resnet50, "decode_predictions", parameters); var d = predobj.ToString(); var list = TupleSolver.TupleToList <object>(predobj); return(null); }
public virtual (float, object) ComputeReward(object achieved_goal, object desired_goal, Dictionary <string, object> info) { Dictionary <string, object> parameters = new Dictionary <string, object>(); parameters["achieved_goal"] = achieved_goal; parameters["desired_goal"] = desired_goal; parameters["info"] = info; var py = InvokeMethod("compute_reward", parameters); var list = TupleSolver.TupleToList <object>(py); return((float)list[0], list[1]); }
public virtual EnvResult Step(object action) { Dictionary <string, object> parameters = new Dictionary <string, object>(); parameters["action"] = action; PyObject py = InvokeMethod("step", parameters); var list = TupleSolver.TupleToList <object>(py); EnvResult result = new EnvResult() { Observation = list[0], Reward = Convert.ToSingle(list[1].ToString()), Done = list[2].ToString() == "True" ? true : false, Info = DictSolver.ToClr <object>(new PyDict((PyObject)list[3])) }; return(result); }
/// <summary> /// Loads the data. /// </summary> /// <param name="path">The path.</param> /// <returns></returns> public static ((NDarray, NDarray), (NDarray, NDarray)) LoadData(string path = "mnist.npz") { var dlist = TupleSolver.TupleToList(Instance.keras.datasets.mnist.load_data(path: path)); return((dlist[0], dlist[1]), (dlist[2], dlist[3])); }
/// <summary> /// Loads the data. /// </summary> /// <returns></returns> public static ((NDarray, NDarray), (NDarray, NDarray)) LoadData() { var dlist = TupleSolver.TupleToList(Instance.keras.datasets.fashion_mnist.load_data()); return((dlist[0], dlist[1]), (dlist[2], dlist[3])); }
/// <summary> /// Loads the data. /// </summary> /// <param name="label_mode">The label mode.</param> /// <returns></returns> public static ((NDarray, NDarray), (NDarray, NDarray)) LoadData(string label_mode = "fine") { var dlist = TupleSolver.TupleToList(Instance.keras.datasets.cifar10.load_data(label_mode: label_mode)); return((dlist[0], dlist[1]), (dlist[2], dlist[3])); }
/// <summary> /// Loads the data. /// </summary> /// <param name="path">The path.</param> /// <param name="test_split">The test split.</param> /// <param name="seed">The seed.</param> /// <returns></returns> public static ((NDarray, NDarray), (NDarray, NDarray)) LoadData(string path = "boston_housing.npz", float test_split = 0.2f, int seed = 113) { var dlist = TupleSolver.TupleToList(Instance.keras.datasets.boston_housing.load_data(path: path, test_split: test_split, seed: seed)); return((dlist[0], dlist[1]), (dlist[2], dlist[3])); }