public static ValueType[] CropValuesEnd <ValueType>(ValueType[] array, ValueType crop_value) { int index_last_non_value = -1; for (int index = 0; index < array.Length; index++) { if (!array[index].Equals(crop_value)) { index_last_non_value = index; } } return(ToolsCollection.Select(array, 0, index_last_non_value + 1)); }
public static int[] CropZerosEnd(int[] array) { int index_last_non_zero = -1; for (int index = 0; index < array.Length; index++) { if (array[index] != 0) { index_last_non_zero = index; } } return(ToolsCollection.Select(array, 0, index_last_non_zero + 1)); }
public float[] back_propagate(float[] out_error) { //only use after forward signal has been processed //store local copy of the output error d_output_error = ToolsCollection.Select(out_error, 0, d_output_size); //will remove bias of next layer //calculate and store activation error for (int o = 0; o < d_output_size; o++) { activation_error[o] = d_output_function_derivative.Compute((float)d_activation[o]) * d_output_error[o]; } //calculate and store the input error ToolsCollection.SetValue(input_error, 0); for (int i = 0; i < d_input_size; i++) { for (int o = 0; o < d_output_size; o++) { input_error[i] += activation_error[o] * d_weights[o, i]; } } //and return signal to be processed by previous layers return(input_error); }
public void TestCreateMedium() { PriceSet price_set = new PriceSet(ToolsPrice.DefaultSymbolGBPUSD, ToolsCollection.Select(ToolsPrice.GetPriceList(ToolsPrice.DefaultSymbolGBPUSD), 0, 40)); List <IIndicator> indicators_features = new List <IIndicator>(); indicators_features.Add(new IndicatorRunningAverage(0)); indicators_features.Add(new IndicatorRunningAverage(1)); List <IIndicator> indicators_labels = new List <IIndicator>(); indicators_labels.Add(new IndicatorMagicProfit(0)); indicators_labels.Add(new IndicatorMagicProfit(1)); MarketModelSimulation market = new MarketModelSimulation(1000, price_set); IDataSet <double, double> dataset = ToolsTradingDataSet.CreateDataSet(market, new IndicatorFusion(indicators_features), new IndicatorFusion(indicators_labels)); Assert.AreEqual(39, dataset.InstanceCount); Assert.AreEqual(2, dataset.FeatureCount); Assert.AreEqual(4, dataset.LabelCount); }
public override LabelType GetLabel(DomainType[] instance_features) { return(model.GetLabel(ToolsCollection.Select(instance_features, selected_feature_indexes))); }