public void GatherStatistics(Network network) { double averageError = 0; foreach (var testElement in TestElements) { var output = network.ForwardPropagation(testElement.Input); var error = Network.MeanSquaredError(output, testElement.DesiredOutput); averageError += error; } averageError /= TestElements.Count; TestErrors.Add(averageError); }
public void GatherStatistics(Network network) { double averageError = 0; double positiveV = 0; double positiveT = 0; //GET COUNT POSITIVES FOR TESTING SET foreach (var testElement in TestElements) { var output = network.ForwardPropagation(testElement.Input); int guessedClass = ConvertMatrixToClass(output); int rightClass = ConvertMatrixToClass(testElement.DesiredOutput); if (guessedClass == rightClass) { positiveV++; } var error = Network.MeanSquaredError(output, testElement.DesiredOutput); averageError += error; } AccuracyListV.Add(positiveV / TestElements.Count); averageError /= TestElements.Count; TestErrors.Add(averageError); //GET COUNT POSITIVES FOR TRAINING SET foreach (var trainElement in TrainingElements) { var output = network.ForwardPropagation(trainElement.Input); int guessedClass = ConvertMatrixToClass(output); int rightClass = ConvertMatrixToClass(trainElement.DesiredOutput); if (guessedClass == rightClass) { positiveT++; } } AccuracyListT.Add(positiveT / TrainingElements.Count); }