Пример #1
0
        private void InitializeReverse()
        {
            // reverse one vehicle length
            reverseDist      = TahoeParams.VL;
            reverseTimestamp = curTimestamp;
            prevCurvature    = double.NaN;

            reverseGear = true;

            behaviorTimestamp = curTimestamp;
            approachSpeed     = 1;
            speedCommand      = new StopAtDistSpeedCommand(reverseDist, true);
        }
        /// <summary>
        /// Parameters to follow the forward vehicle
        /// </summary>
        /// <param name="lane"></param>
        /// <param name="state"></param>
        /// <returns></returns>
        public TravelingParameters Follow(ArbiterLane lane, VehicleState state)
        {
            // travelling parameters
            TravelingParameters tp = new TravelingParameters();

            // ignorable obstacles
            List <int> ignoreVehicle = new List <int>();

            ignoreVehicle.Add(CurrentVehicle.VehicleId);

            // get control parameters
            ForwardVehicleTrackingControl fvtc = GetControl(lane, state);

            // init params
            tp.DistanceToGo     = fvtc.xDistanceToGood;
            tp.NextState        = CoreCommon.CorePlanningState;
            tp.RecommendedSpeed = fvtc.vFollowing;
            tp.Type             = TravellingType.Vehicle;
            tp.Decorators       = TurnDecorators.NoDecorators;

            // flag to ignore forward vehicle
            bool ignoreForward = false;

            // reversed lane path
            LinePath lp = lane.LanePath().Clone();

            lp.Reverse();

            #region Following Control

            #region Immediate Stop

            // need to stop immediately
            if (fvtc.vFollowing == 0.0)
            {
                // don't ignore forward
                ignoreForward = false;

                // speed command
                SpeedCommand sc = new ScalarSpeedCommand(0.0);
                tp.UsingSpeed = true;

                // standard path following behavior
                Behavior final = new StayInLaneBehavior(lane.LaneId, sc, ignoreVehicle, lp, lane.Width, lane.NumberOfLanesLeft(state.Front, false), lane.NumberOfLanesRight(state.Front, false));
                tp.Behavior     = final;
                tp.SpeedCommand = sc;
            }

            #endregion

            #region Distance Stop

            // stop at distance
            else if (fvtc.vFollowing < 0.7 &&
                     CoreCommon.Communications.GetVehicleSpeed().Value <= 2.24 &&
                     fvtc.xSeparation > fvtc.xAbsMin)
            {
                // ignore forward vehicle
                ignoreForward = true;

                // speed command
                SpeedCommand sc = new StopAtDistSpeedCommand(fvtc.xDistanceToGood);
                tp.UsingSpeed = false;

                // standard path following behavior
                Behavior final = new StayInLaneBehavior(lane.LaneId, sc, ignoreVehicle, lp, lane.Width, lane.NumberOfLanesLeft(state.Front, false), lane.NumberOfLanesRight(state.Front, false));
                tp.Behavior     = final;
                tp.SpeedCommand = sc;
            }

            #endregion

            #region Normal Following

            // else normal
            else
            {
                // ignore the forward vehicle as we are tracking properly
                ignoreForward = true;

                // speed command
                SpeedCommand sc = new ScalarSpeedCommand(fvtc.vFollowing);
                tp.DistanceToGo     = fvtc.xDistanceToGood;
                tp.NextState        = CoreCommon.CorePlanningState;
                tp.RecommendedSpeed = fvtc.vFollowing;
                tp.Type             = TravellingType.Vehicle;
                tp.UsingSpeed       = true;

                // standard path following behavior
                Behavior final = new StayInLaneBehavior(lane.LaneId, sc, ignoreVehicle, lp, lane.Width, lane.NumberOfLanesLeft(state.Front, false), lane.NumberOfLanesRight(state.Front, false));
                tp.Behavior     = final;
                tp.SpeedCommand = sc;
            }

            #endregion

            #endregion

            // check ignore
            if (ignoreForward)
            {
                List <int> ignorable = new List <int>();
                ignorable.Add(this.CurrentVehicle.VehicleId);
                tp.VehiclesToIgnore = ignorable;
            }
            else
            {
                tp.VehiclesToIgnore = new List <int>();
            }

            // return parameterization
            return(tp);
        }
        /// <summary>
        /// Gets parameterization
        /// </summary>
        /// <param name="lane"></param>
        /// <param name="speed"></param>
        /// <param name="distance"></param>
        /// <param name="state"></param>
        /// <returns></returns>
        public TravelingParameters GetParameters(ArbiterLane lane, double speed, double distance, VehicleState state)
        {
            double       distanceCutOff = CoreCommon.OperationslStopLineSearchDistance;
            Maneuver     m = new Maneuver();
            SpeedCommand sc;
            bool         usingSpeed = true;

            #region Distance Cutoff

            // check if distance is less than cutoff
            if (distance < distanceCutOff)
            {
                // default behavior
                sc = new StopAtDistSpeedCommand(distance);
                Behavior b = new StayInLaneBehavior(lane.LaneId, sc, new List <int>(), lane.LanePath(), lane.Width, lane.NumberOfLanesLeft(state.Front, true), lane.NumberOfLanesRight(state.Front, true));

                // stopping so not using speed param
                usingSpeed = false;

                // standard behavior is fine for maneuver
                m = new Maneuver(b, new StayInLaneState(lane, CoreCommon.CorePlanningState), TurnDecorators.NoDecorators, state.Timestamp);
            }

            #endregion

            #region Outisde Distance Envelope

            // not inside distance envalope
            else
            {
                // get lane
                ArbiterLane al = lane;

                // default behavior
                sc = new ScalarSpeedCommand(speed);
                Behavior b = new StayInLaneBehavior(al.LaneId, sc, new List <int>(), al.LanePath(), al.Width, al.NumberOfLanesLeft(state.Front, true), al.NumberOfLanesRight(state.Front, true));

                // standard behavior is fine for maneuver
                m = new Maneuver(b, new StayInLaneState(al, CoreCommon.CorePlanningState), TurnDecorators.NoDecorators, state.Timestamp);
            }

            #endregion

            #region Parameterize

            // create new params
            TravelingParameters tp = new TravelingParameters();
            tp.Behavior         = m.PrimaryBehavior;
            tp.Decorators       = m.PrimaryBehavior.Decorators;
            tp.DistanceToGo     = distance;
            tp.NextState        = m.PrimaryState;
            tp.RecommendedSpeed = speed;
            tp.Type             = TravellingType.Navigation;
            tp.UsingSpeed       = usingSpeed;
            tp.SpeedCommand     = sc;
            tp.VehiclesToIgnore = new List <int>();

            // return navigation params
            return(tp);

            #endregion
        }
        /// <summary>
        /// Makes new parameterization for nav
        /// </summary>
        /// <param name="lane"></param>
        /// <param name="lanePlan"></param>
        /// <param name="speed"></param>
        /// <param name="distance"></param>
        /// <param name="stopType"></param>
        /// <returns></returns>
        public TravelingParameters NavStopParameterization(IFQMPlanable lane, RoadPlan roadPlan, double speed, double distance,
                                                           ArbiterWaypoint stopWaypoint, StopType stopType, VehicleState state)
        {
            // get min dist
            double distanceCutOff = stopType == StopType.StopLine ? CoreCommon.OperationslStopLineSearchDistance : CoreCommon.OperationalStopDistance;

            #region Get Decorators

            // turn direction default
            ArbiterTurnDirection     atd        = ArbiterTurnDirection.Straight;
            List <BehaviorDecorator> decorators = TurnDecorators.NoDecorators;

            // check if need decorators
            if (lane is ArbiterLane &&
                stopWaypoint.Equals(roadPlan.BestPlan.laneWaypointOfInterest.PointOfInterest) &&
                roadPlan.BestPlan.laneWaypointOfInterest.IsExit &&
                distance < 40.0)
            {
                if (roadPlan.BestPlan.laneWaypointOfInterest.BestExit == null)
                {
                    ArbiterOutput.Output("NAV BUG: lanePlan.laneWaypointOfInterest.BestExit: FQM NavStopParameterization");
                }
                else
                {
                    switch (roadPlan.BestPlan.laneWaypointOfInterest.BestExit.TurnDirection)
                    {
                    case ArbiterTurnDirection.Left:
                        decorators = TurnDecorators.LeftTurnDecorator;
                        atd        = ArbiterTurnDirection.Left;
                        break;

                    case ArbiterTurnDirection.Right:
                        atd        = ArbiterTurnDirection.Right;
                        decorators = TurnDecorators.RightTurnDecorator;
                        break;

                    case ArbiterTurnDirection.Straight:
                        atd        = ArbiterTurnDirection.Straight;
                        decorators = TurnDecorators.NoDecorators;
                        break;

                    case ArbiterTurnDirection.UTurn:
                        atd        = ArbiterTurnDirection.UTurn;
                        decorators = TurnDecorators.LeftTurnDecorator;
                        break;
                    }
                }
            }
            else if (lane is SupraLane)
            {
                SupraLane sl = (SupraLane)lane;
                double    distToInterconnect = sl.DistanceBetween(state.Front, sl.Interconnect.InitialGeneric.Position);

                if ((distToInterconnect > 0 && distToInterconnect < 40.0) || sl.ClosestComponent(state.Front) == SLComponentType.Interconnect)
                {
                    switch (sl.Interconnect.TurnDirection)
                    {
                    case ArbiterTurnDirection.Left:
                        decorators = TurnDecorators.LeftTurnDecorator;
                        atd        = ArbiterTurnDirection.Left;
                        break;

                    case ArbiterTurnDirection.Right:
                        atd        = ArbiterTurnDirection.Right;
                        decorators = TurnDecorators.RightTurnDecorator;
                        break;

                    case ArbiterTurnDirection.Straight:
                        atd        = ArbiterTurnDirection.Straight;
                        decorators = TurnDecorators.NoDecorators;
                        break;

                    case ArbiterTurnDirection.UTurn:
                        atd        = ArbiterTurnDirection.UTurn;
                        decorators = TurnDecorators.LeftTurnDecorator;
                        break;
                    }
                }
            }

            #endregion

            #region Get Maneuver

            Maneuver     m          = new Maneuver();
            bool         usingSpeed = true;
            SpeedCommand sc         = new StopAtDistSpeedCommand(distance);

            #region Distance Cutoff

            // check if distance is less than cutoff
            if (distance < distanceCutOff && stopType != StopType.EndOfLane)
            {
                // default behavior
                Behavior b = new StayInLaneBehavior(stopWaypoint.Lane.LaneId, new StopAtDistSpeedCommand(distance), new List <int>(), lane.LanePath(), stopWaypoint.Lane.Width, stopWaypoint.Lane.NumberOfLanesLeft(state.Front, true), stopWaypoint.Lane.NumberOfLanesRight(state.Front, true));

                // stopping so not using speed param
                usingSpeed = false;

                // exit is next
                if (stopType == StopType.Exit)
                {
                    // exit means stopping at a good exit in our current lane
                    IState nextState = new StoppingAtExitState(stopWaypoint.Lane, stopWaypoint, atd, true, roadPlan.BestPlan.laneWaypointOfInterest.BestExit, state.Timestamp, state.Front);
                    m = new Maneuver(b, nextState, decorators, state.Timestamp);
                }

                // stop line is left
                else if (stopType == StopType.StopLine)
                {
                    // determine if hte stop line is the best exit
                    bool isNavExit = roadPlan.BestPlan.laneWaypointOfInterest.PointOfInterest.Equals(stopWaypoint);

                    // get turn direction
                    atd = isNavExit ? atd : ArbiterTurnDirection.Straight;

                    // predetermine interconnect if best exit
                    ArbiterInterconnect desired = null;
                    if (isNavExit)
                    {
                        desired = roadPlan.BestPlan.laneWaypointOfInterest.BestExit;
                    }
                    else if (stopWaypoint.NextPartition != null && state.Front.DistanceTo(roadPlan.BestPlan.laneWaypointOfInterest.PointOfInterest.Position) > 25)
                    {
                        desired = stopWaypoint.NextPartition.ToInterconnect;
                    }

                    // set decorators
                    decorators = isNavExit ? decorators : TurnDecorators.NoDecorators;

                    // stop at the stop
                    IState nextState = new StoppingAtStopState(stopWaypoint.Lane, stopWaypoint, atd, isNavExit, desired);
                    b  = new StayInLaneBehavior(stopWaypoint.Lane.LaneId, new StopAtLineSpeedCommand(), new List <int>(), lane.LanePath(), stopWaypoint.Lane.Width, stopWaypoint.Lane.NumberOfLanesLeft(state.Front, true), stopWaypoint.Lane.NumberOfLanesRight(state.Front, true));
                    m  = new Maneuver(b, nextState, decorators, state.Timestamp);
                    sc = new StopAtLineSpeedCommand();
                }
                else if (stopType == StopType.LastGoal)
                {
                    // stop at the last goal
                    IState nextState = new StayInLaneState(stopWaypoint.Lane, CoreCommon.CorePlanningState);
                    m = new Maneuver(b, nextState, decorators, state.Timestamp);
                }
            }

            #endregion

            #region Outisde Distance Envelope

            // not inside distance envalope
            else
            {
                // set speed
                sc = new ScalarSpeedCommand(speed);

                // check if lane
                if (lane is ArbiterLane)
                {
                    // get lane
                    ArbiterLane al = (ArbiterLane)lane;

                    // default behavior
                    Behavior b = new StayInLaneBehavior(al.LaneId, new ScalarSpeedCommand(speed), new List <int>(), al.LanePath(), al.Width, al.NumberOfLanesLeft(state.Front, true), al.NumberOfLanesRight(state.Front, true));

                    // standard behavior is fine for maneuver
                    m = new Maneuver(b, new StayInLaneState(al, CoreCommon.CorePlanningState), decorators, state.Timestamp);
                }
                // check if supra lane
                else if (lane is SupraLane)
                {
                    // get lane
                    SupraLane sl = (SupraLane)lane;

                    // get sl state
                    StayInSupraLaneState sisls = (StayInSupraLaneState)CoreCommon.CorePlanningState;

                    // get default beheavior
                    Behavior b = sisls.GetBehavior(new ScalarSpeedCommand(speed), state.Front, new List <int>());

                    // standard behavior is fine for maneuver
                    m = new Maneuver(b, sisls, decorators, state.Timestamp);
                }
            }

            #endregion

            #endregion

            #region Parameterize

            // create new params
            TravelingParameters tp = new TravelingParameters();
            tp.Behavior         = m.PrimaryBehavior;
            tp.Decorators       = m.PrimaryBehavior.Decorators;
            tp.DistanceToGo     = distance;
            tp.NextState        = m.PrimaryState;
            tp.RecommendedSpeed = speed;
            tp.Type             = TravellingType.Navigation;
            tp.UsingSpeed       = usingSpeed;
            tp.SpeedCommand     = sc;
            tp.VehiclesToIgnore = new List <int>();

            // return navigation params
            return(tp);

            #endregion
        }
Пример #5
0
        /// <summary>
        /// Parameters to follow the forward vehicle
        /// </summary>
        /// <param name="lane"></param>
        /// <param name="state"></param>
        /// <returns></returns>
        public TravelingParameters Follow(IFQMPlanable lane, VehicleState state, List <ArbiterWaypoint> ignorable)
        {
            // travelling parameters
            TravelingParameters tp = new TravelingParameters();

            // get control parameters
            ForwardVehicleTrackingControl fvtc = GetControl(lane, state, ignorable);

            this.ForwardControl = fvtc;

            // initialize the parameters
            tp.DistanceToGo     = fvtc.xDistanceToGood;
            tp.NextState        = CoreCommon.CorePlanningState;
            tp.RecommendedSpeed = fvtc.vFollowing;
            tp.Type             = TravellingType.Vehicle;
            tp.Decorators       = new List <BehaviorDecorator>();

            // ignore the forward vehicles
            tp.VehiclesToIgnore = this.VehiclesToIgnore;

            #region Following Control

            #region Immediate Stop

            // need to stop immediately
            if (fvtc.vFollowing == 0.0)
            {
                // speed command
                SpeedCommand sc = new ScalarSpeedCommand(0.0);
                tp.SpeedCommand = sc;
                tp.UsingSpeed   = true;

                if (lane is ArbiterLane)
                {
                    // standard path following behavior
                    ArbiterLane al    = ((ArbiterLane)lane);
                    Behavior    final = new StayInLaneBehavior(al.LaneId, sc, this.VehiclesToIgnore, al.LanePath(), al.Width, al.NumberOfLanesLeft(state.Front, true), al.NumberOfLanesRight(state.Front, true));
                    final.Decorators = tp.Decorators;
                    tp.Behavior      = final;
                }
                else
                {
                    SupraLane            sl    = (SupraLane)lane;
                    StayInSupraLaneState sisls = (StayInSupraLaneState)CoreCommon.CorePlanningState;
                    Behavior             final = sisls.GetBehavior(sc, state.Front, this.VehiclesToIgnore);
                    final.Decorators = tp.Decorators;
                    tp.Behavior      = final;
                }
            }

            #endregion

            #region Stopping at Distance

            // stop at distance
            else if (fvtc.vFollowing < 0.7 &&
                     CoreCommon.Communications.GetVehicleSpeed().Value <= 2.24 &&
                     fvtc.xSeparation > fvtc.xAbsMin)
            {
                // speed command
                SpeedCommand sc = new StopAtDistSpeedCommand(fvtc.xDistanceToGood);
                tp.SpeedCommand = sc;
                tp.UsingSpeed   = false;

                if (lane is ArbiterLane)
                {
                    ArbiterLane al = (ArbiterLane)lane;

                    // standard path following behavior
                    Behavior final = new StayInLaneBehavior(al.LaneId, sc, this.VehiclesToIgnore, lane.LanePath(), al.Width, al.NumberOfLanesLeft(state.Front, true), al.NumberOfLanesRight(state.Front, true));
                    final.Decorators = tp.Decorators;
                    tp.Behavior      = final;
                }
                else
                {
                    SupraLane            sl    = (SupraLane)lane;
                    StayInSupraLaneState sisls = (StayInSupraLaneState)CoreCommon.CorePlanningState;
                    Behavior             final = sisls.GetBehavior(sc, state.Front, this.VehiclesToIgnore);
                    final.Decorators = tp.Decorators;
                    tp.Behavior      = final;
                }
            }

            #endregion

            #region Normal Following

            // else normal
            else
            {
                // speed command
                SpeedCommand sc = new ScalarSpeedCommand(fvtc.vFollowing);
                tp.DistanceToGo     = fvtc.xDistanceToGood;
                tp.NextState        = CoreCommon.CorePlanningState;
                tp.RecommendedSpeed = fvtc.vFollowing;
                tp.Type             = TravellingType.Vehicle;
                tp.UsingSpeed       = true;
                tp.SpeedCommand     = sc;

                if (lane is ArbiterLane)
                {
                    ArbiterLane al = ((ArbiterLane)lane);
                    // standard path following behavior
                    Behavior final = new StayInLaneBehavior(al.LaneId, sc, this.VehiclesToIgnore, lane.LanePath(), al.Width, al.NumberOfLanesLeft(state.Front, true), al.NumberOfLanesRight(state.Front, true));
                    final.Decorators = tp.Decorators;
                    tp.Behavior      = final;
                }
                else
                {
                    SupraLane            sl    = (SupraLane)lane;
                    StayInSupraLaneState sisls = (StayInSupraLaneState)CoreCommon.CorePlanningState;
                    Behavior             final = sisls.GetBehavior(sc, state.Front, this.VehiclesToIgnore);
                    final.Decorators = tp.Decorators;
                    tp.Behavior      = final;
                }
            }

            #endregion

            #endregion

            #region Check for Oncoming Vehicles

            // check if need to add current lane oncoming vehicle decorator
            if (false && this.CurrentVehicle.PassedDelayedBirth && fvtc.forwardOncoming && fvtc.xSeparation > TahoeParams.VL && fvtc.xSeparation < 30)
            {
                // check valid lane area
                if (lane is ArbiterLane || ((SupraLane)lane).ClosestComponent(this.CurrentVehicle.ClosestPosition) == SLComponentType.Initial)
                {
                    // get distance to and speed of the forward vehicle
                    double fvDistance = fvtc.xSeparation;
                    double fvSpeed    = fvtc.vTarget;

                    // create the 5mph behavior
                    ScalarSpeedCommand updated = new ScalarSpeedCommand(2.24);

                    // set that we are using speed
                    tp.UsingSpeed       = true;
                    tp.RecommendedSpeed = updated.Speed;
                    tp.DistanceToGo     = fvtc.xSeparation;

                    // create the decorator
                    OncomingVehicleDecorator ovd = new OncomingVehicleDecorator(updated, fvDistance, fvSpeed);

                    // add the decorator
                    tp.Behavior.Decorators.Add(ovd);
                    tp.Decorators.Add(ovd);
                }
            }

            #endregion

            // set current
            this.followingParameters = tp;

            // return parameterization
            return(tp);
        }
        public static void SmoothAndTrack(LinePath basePath, bool useTargetPath,
                                          IList <LinePath> leftBounds, IList <LinePath> rightBounds,
                                          double maxSpeed, double?endingHeading, bool endingOffsetBound,
                                          CarTimestamp curTimestamp, bool doAvoidance,
                                          SpeedCommand speedCommand, CarTimestamp behaviorTimestamp,
                                          string commandLabel, ref bool cancelled,
                                          ref LinePath previousSmoothedPath, ref CarTimestamp previousSmoothedPathTimestamp, ref double?approachSpeed)
        {
            // if we're in listen mode, just return for now
            if (OperationalBuilder.BuildMode == BuildMode.Listen)
            {
                return;
            }

            PathPlanner.PlanningResult result;

            double   curSpeed       = Services.StateProvider.GetVehicleState().speed;
            LinePath targetPath     = new LinePath();
            double   initialHeading = 0;

            // get the part we just used to make a prediction
            if (useTargetPath && previousSmoothedPath != null)
            {
                //targetPath = previousSmoothedPath.Transform(Services.RelativePose.GetTransform(previousSmoothedPathTimestamp, curTimestamp));
                // interpolate the path with a smoothing spline
                //targetPath = targetPath.SplineInterpolate(0.05);
                //Services.UIService.PushRelativePath(targetPath, curTimestamp, "prediction path2");
                // calculate the point speed*dt ahead

                /*double lookaheadDist = curSpeed*0.20;
                 * if (lookaheadDist > 0.1) {
                 *      LinePath.PointOnPath pt = targetPath.AdvancePoint(targetPath.ZeroPoint, lookaheadDist);
                 *      // get the heading
                 *      initialHeading = targetPath.GetSegment(pt.Index).UnitVector.ArcTan;
                 *      // adjust the base path start point to be the predicted location
                 *      basePath[0] = pt.Location;
                 *
                 *      // get the part we just used to make a prediction
                 *      predictionPath = targetPath.SubPath(targetPath.ZeroPoint, pt);
                 *      // push to the UI
                 *      Services.UIService.PushRelativePath(predictionPath, curTimestamp, "prediction path");
                 *      //basePath[0] = new Coordinates(lookaheadDist, 0);
                 *      Services.UIService.PushRelativePath(basePath, curTimestamp, "subpath2");
                 *      Services.Dataset.ItemAs<double>("initial heading").Add(initialHeading, curTimestamp);
                 *      // calculate a piece of the sub path
                 *      //targetPath = targetPath.SubPath(targetPath.ZeroPoint, 7);
                 * }*/

                // get the tracking manager to predict stuff like whoa
                AbsolutePose            absPose;
                OperationalVehicleState vehicleState;
                Services.TrackingManager.ForwardPredict(out absPose, out vehicleState);
                // insert the stuff stuff
                basePath[0]    = absPose.xy;
                initialHeading = absPose.heading;

                // start walking down the path until the angle is cool
                double angle_threshold = 30 * Math.PI / 180.0;
                double dist;
                LinePath.PointOnPath newPoint = new LinePath.PointOnPath();
                for (dist = 0; dist < 10; dist += 1)
                {
                    // get the point advanced from the 2nd point on the base path by dist
                    double distTemp = dist;
                    newPoint = basePath.AdvancePoint(basePath.GetPointOnPath(1), ref distTemp);

                    // check if we're past the end
                    if (distTemp > 0)
                    {
                        break;
                    }

                    // check if the angle is coolness or not
                    double angle = Math.Acos((newPoint.Location - basePath[0]).Normalize().Dot(basePath.GetSegment(newPoint.Index).UnitVector));

                    if (Math.Acos(angle) < angle_threshold)
                    {
                        break;
                    }
                }

                // create a new version of the base path with the stuff section removed
                basePath = basePath.RemoveBetween(basePath.StartPoint, newPoint);

                Services.UIService.PushRelativePath(basePath, curTimestamp, "subpath2");

                // zero that stuff out
                targetPath = new LinePath();
            }

            StaticObstacles obstacles = null;

            // only do the planning is we're in a lane scenario
            // otherwise, the obstacle grid will be WAY too large
            if (doAvoidance && leftBounds.Count == 1 && rightBounds.Count == 1)
            {
                // get the obstacles predicted to the current timestamp
                obstacles = Services.ObstaclePipeline.GetProcessedObstacles(curTimestamp);
            }

            // start the planning timer
            Stopwatch planningTimer = Stopwatch.StartNew();

            // check if there are any obstacles
            if (obstacles != null && obstacles.polygons != null && obstacles.polygons.Count > 0)
            {
                if (cancelled)
                {
                    return;
                }

                // we need to do the full obstacle avoidance
                // execute the obstacle manager
                LinePath avoidancePath;
                List <ObstacleManager.ObstacleType> obstacleSideFlags;
                bool success;
                Services.ObstacleManager.ProcessObstacles(basePath, leftBounds, rightBounds, obstacles.polygons,
                                                          out avoidancePath, out obstacleSideFlags, out success);

                // check if we have success
                if (success)
                {
                    // build the boundary lists
                    // start with the lanes
                    List <Boundary> leftSmootherBounds  = new List <Boundary>();
                    List <Boundary> rightSmootherBounds = new List <Boundary>();

                    double laneMinSpacing     = 0.1;
                    double laneDesiredSpacing = 0.1;
                    double laneAlphaS         = 0.1;
                    leftSmootherBounds.Add(new Boundary(leftBounds[0], laneMinSpacing, laneDesiredSpacing, laneAlphaS));
                    rightSmootherBounds.Add(new Boundary(rightBounds[0], laneMinSpacing, laneDesiredSpacing, laneAlphaS));

                    // sort out obstacles as left and right
                    double obstacleMinSpacing     = 0.8;
                    double obstacleDesiredSpacing = 0.8;
                    double obstacleAlphaS         = 100;
                    int    totalObstacleClusters  = obstacles.polygons.Count;
                    for (int i = 0; i < totalObstacleClusters; i++)
                    {
                        if (obstacleSideFlags[i] == ObstacleManager.ObstacleType.Left)
                        {
                            Boundary bound = new Boundary(obstacles.polygons[i], obstacleMinSpacing, obstacleDesiredSpacing, obstacleAlphaS);
                            bound.CheckFrontBumper = true;
                            leftSmootherBounds.Add(bound);
                        }
                        else if (obstacleSideFlags[i] == ObstacleManager.ObstacleType.Right)
                        {
                            Boundary bound = new Boundary(obstacles.polygons[i], obstacleMinSpacing, obstacleDesiredSpacing, obstacleAlphaS);
                            bound.CheckFrontBumper = true;
                            rightSmootherBounds.Add(bound);
                        }
                    }

                    if (cancelled)
                    {
                        return;
                    }

                    // execute the smoothing
                    PathPlanner planner = new PathPlanner();
                    planner.Options.alpha_w = 0;
                    planner.Options.alpha_d = 10;
                    planner.Options.alpha_c = 10;
                    result = planner.PlanPath(avoidancePath, targetPath, leftSmootherBounds, rightSmootherBounds, initialHeading, maxSpeed, Services.StateProvider.GetVehicleState().speed, endingHeading, curTimestamp, endingOffsetBound);
                }
                else
                {
                    // mark that we did not succeed
                    result = new PathPlanner.PlanningResult(SmoothResult.Infeasible, null);
                }
            }
            else
            {
                if (cancelled)
                {
                    return;
                }

                // do the path smoothing
                PathPlanner planner = new PathPlanner();

                List <LineList> leftList = new List <LineList>();
                foreach (LinePath ll in leftBounds)
                {
                    leftList.Add(ll);
                }
                List <LineList> rightList = new List <LineList>();
                foreach (LinePath rl in rightBounds)
                {
                    rightList.Add(rl);
                }

                planner.Options.alpha_w = 0;
                planner.Options.alpha_s = 0.1;
                planner.Options.alpha_d = 10;
                planner.Options.alpha_c = 10;

                result = planner.PlanPath(basePath, targetPath, leftList, rightList, initialHeading, maxSpeed, Services.StateProvider.GetVehicleState().speed, endingHeading, curTimestamp, endingOffsetBound);
            }

            planningTimer.Stop();

            BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "planning took {0} ms", planningTimer.ElapsedMilliseconds);

            Services.Dataset.ItemAs <bool>("route feasible").Add(result.result == SmoothResult.Sucess, LocalCarTimeProvider.LocalNow);

            if (result.result == SmoothResult.Sucess)
            {
                // insert the point (-1,0) so we make sure that the zero point during tracking is at the vehicle
                //Coordinates startingVec = result.path[1].Point-result.path[0].Point;
                //Coordinates insertPoint = result.path[0].Point-startingVec.Normalize();
                //result.path.Insert(0, new OperationalLayer.PathPlanning.PathPoint(insertPoint, maxSpeed));

                previousSmoothedPath          = new LinePath(result.path);
                previousSmoothedPathTimestamp = curTimestamp;
                Services.UIService.PushLineList(previousSmoothedPath, curTimestamp, "smoothed path", true);

                if (cancelled)
                {
                    return;
                }

                // we've planned out the path, now build up the command
                ISpeedGenerator speedGenerator;
                if (speedCommand is ScalarSpeedCommand)
                {
                    /*if (result.path.HasSpeeds) {
                     *      speedGenerator = result.path;
                     * }
                     * else {*/
                    speedGenerator = new ConstantSpeedGenerator(maxSpeed, null);
                    //}
                }
                else if (speedCommand is StopAtDistSpeedCommand)
                {
                    StopAtDistSpeedCommand stopCommand  = (StopAtDistSpeedCommand)speedCommand;
                    IDistanceProvider      distProvider = new TravelledDistanceProvider(behaviorTimestamp, stopCommand.Distance);
                    speedGenerator = new StopSpeedGenerator(distProvider, approachSpeed.Value);

                    BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "stay in lane - remaining stop stop dist {0}", distProvider.GetRemainingDistance());
                }
                else if (speedCommand is StopAtLineSpeedCommand)
                {
                    IDistanceProvider distProvider = new StoplineDistanceProvider();
                    speedGenerator = new StopSpeedGenerator(distProvider, approachSpeed.Value);

                    BehaviorManager.TraceSource.TraceEvent(TraceEventType.Verbose, 0, "stay in lane - remaining stop stop dist {0}", distProvider.GetRemainingDistance());
                }
                else if (speedCommand == null)
                {
                    throw new InvalidOperationException("Speed command is null");
                }
                else
                {
                    throw new InvalidOperationException("Speed command " + speedCommand.GetType().FullName + " is not supported");
                }

                if (cancelled)
                {
                    return;
                }

                // build up the command
                TrackingCommand trackingCommand = new TrackingCommand(new FeedbackSpeedCommandGenerator(speedGenerator), new PathSteeringCommandGenerator(result.path), false);
                trackingCommand.Label = commandLabel;

                // queue it to execute
                Services.TrackingManager.QueueCommand(trackingCommand);
            }
        }
Пример #7
0
        /// <summary>
        /// Gets parameterization
        /// </summary>
        /// <param name="lane"></param>
        /// <param name="speed"></param>
        /// <param name="distance"></param>
        /// <param name="state"></param>
        /// <returns></returns>
        public TravelingParameters GetParameters(double speed, double distance, ArbiterWaypoint final, VehicleState state, bool canUseDistance)
        {
            double       distanceCutOff = CoreCommon.OperationalStopDistance;
            SpeedCommand sc;
            bool         usingSpeed = true;
            Maneuver     m;

            #region Generate Next State

            // get turn params
            LinePath finalPath;
            LineList leftLL;
            LineList rightLL;
            IntersectionToolkit.TurnInfo(final, out finalPath, out leftLL, out rightLL);
            TurnState ts = new TurnState(this.turn, this.turn.TurnDirection, final.Lane, finalPath, leftLL, rightLL, new ScalarSpeedCommand(speed));

            #endregion

            #region Distance Cutoff

            // check if distance is less than cutoff
            if (distance < distanceCutOff && canUseDistance)
            {
                // default behavior
                sc = new StopAtDistSpeedCommand(distance);

                // stopping so not using speed param
                usingSpeed = false;
            }

            #endregion

            #region Outisde Distance Envelope

            // not inside distance envalope
            else
            {
                // default behavior
                sc = new ScalarSpeedCommand(speed);
            }

            #endregion

            #region Generate Maneuver

            if (ts.Interconnect.InitialGeneric is ArbiterWaypoint &&
                CoreCommon.RoadNetwork.IntersectionLookup.ContainsKey(((ArbiterWaypoint)ts.Interconnect.InitialGeneric).AreaSubtypeWaypointId))
            {
                Polygon p = CoreCommon.RoadNetwork.IntersectionLookup[((ArbiterWaypoint)ts.Interconnect.InitialGeneric).AreaSubtypeWaypointId].IntersectionPolygon;

                // behavior
                Behavior b = new TurnBehavior(ts.TargetLane.LaneId, ts.EndingPath, ts.LeftBound, ts.RightBound, sc, p, this.forwardMonitor.VehiclesToIgnore, ts.Interconnect.InterconnectId);
                m = new Maneuver(b, ts, ts.DefaultStateDecorators, state.Timestamp);
            }
            else
            {
                // behavior
                Behavior b = new TurnBehavior(ts.TargetLane.LaneId, ts.EndingPath, ts.LeftBound, ts.RightBound, sc, null, this.forwardMonitor.VehiclesToIgnore, ts.Interconnect.InterconnectId);
                m = new Maneuver(b, ts, ts.DefaultStateDecorators, state.Timestamp);
            }

            #endregion

            #region Parameterize

            // create new params
            TravelingParameters tp = new TravelingParameters();
            tp.Behavior         = m.PrimaryBehavior;
            tp.Decorators       = m.PrimaryBehavior.Decorators;
            tp.DistanceToGo     = distance;
            tp.NextState        = m.PrimaryState;
            tp.RecommendedSpeed = speed;
            tp.Type             = TravellingType.Navigation;
            tp.UsingSpeed       = usingSpeed;
            tp.SpeedCommand     = sc;
            tp.VehiclesToIgnore = this.forwardMonitor.VehiclesToIgnore;

            #endregion

            // return navigation params
            return(tp);
        }
Пример #8
0
        /// <summary>
        /// Gets primary maneuver given our position and the turn we are traveling upon
        /// </summary>
        /// <param name="vehicleState"></param>
        /// <returns></returns>
        public Maneuver PrimaryManeuver(VehicleState vehicleState, List <ITacticalBlockage> blockages, TurnState turnState)
        {
            #region Check are planning over the correct turn

            if (CoreCommon.CorePlanningState is TurnState)
            {
                TurnState ts = (TurnState)CoreCommon.CorePlanningState;
                if (this.turn == null || !this.turn.Equals(ts.Interconnect))
                {
                    this.turn           = ts.Interconnect;
                    this.forwardMonitor = new TurnForwardMonitor(ts.Interconnect, null);
                }
                else if (this.forwardMonitor.turn == null || !this.forwardMonitor.turn.Equals(ts.Interconnect))
                {
                    this.forwardMonitor = new TurnForwardMonitor(ts.Interconnect, null);
                }
            }

            #endregion

            #region Blockages

            // check blockages
            if (blockages != null && blockages.Count > 0 && blockages[0] is TurnBlockage)
            {
                // create the blockage state
                EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);

                // check not at highest level already
                if (turnState.Saudi != SAUDILevel.L1 || turnState.UseTurnBounds)
                {
                    // check not from a dynamicly moving vehicle
                    if (blockages[0].BlockageReport.BlockageType != BlockageType.Dynamic ||
                        (TacticalDirector.ValidVehicles.ContainsKey(blockages[0].BlockageReport.TrackID) &&
                         TacticalDirector.ValidVehicles[blockages[0].BlockageReport.TrackID].IsStopped))
                    {
                        // go to a blockage handling tactical
                        return(new Maneuver(new NullBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp));
                    }
                    else
                    {
                        ArbiterOutput.Output("Turn blockage reported for moving vehicle, ignoring");
                    }
                }
                else
                {
                    ArbiterOutput.Output("Turn blockage, but recovery escalation already at highest state, ignoring report");
                }
            }

            #endregion

            #region Intersection Check

            if (!this.CanGo(vehicleState))
            {
                if (turn.FinalGeneric is ArbiterWaypoint)
                {
                    TravelingParameters tp = this.GetParameters(0.0, 0.0, (ArbiterWaypoint)turn.FinalGeneric, vehicleState, false);
                    return(new Maneuver(tp.Behavior, CoreCommon.CorePlanningState, tp.NextState.DefaultStateDecorators, vehicleState.Timestamp));
                }
                else
                {
                    // get turn params
                    LinePath finalPath;
                    LineList leftLL;
                    LineList rightLL;
                    IntersectionToolkit.ZoneTurnInfo(this.turn, (ArbiterPerimeterWaypoint)this.turn.FinalGeneric, out finalPath, out leftLL, out rightLL);

                    // hold brake
                    IState       nextState = new TurnState(this.turn, this.turn.TurnDirection, null, finalPath, leftLL, rightLL, new ScalarSpeedCommand(0.0));
                    TurnBehavior b         = new TurnBehavior(null, finalPath, leftLL, rightLL, new ScalarSpeedCommand(0.0), this.turn.InterconnectId);
                    return(new Maneuver(b, CoreCommon.CorePlanningState, nextState.DefaultStateDecorators, vehicleState.Timestamp));
                }
            }

            #endregion

            #region Final is Lane Waypoint

            if (turn.FinalGeneric is ArbiterWaypoint)
            {
                // final point
                ArbiterWaypoint final = (ArbiterWaypoint)turn.FinalGeneric;

                // plan down entry lane
                RoadPlan rp = navigation.PlanNavigableArea(final.Lane, final.Position,
                                                           CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId], new List <ArbiterWaypoint>());

                // point of interest downstream
                DownstreamPointOfInterest dpoi = rp.BestPlan.laneWaypointOfInterest;

                // get path this represents
                List <Coordinates> pathCoordinates = new List <Coordinates>();
                pathCoordinates.Add(vehicleState.Position);
                foreach (ArbiterWaypoint aw in final.Lane.WaypointsInclusive(final, final.Lane.WaypointList[final.Lane.WaypointList.Count - 1]))
                {
                    pathCoordinates.Add(aw.Position);
                }
                LinePath lp = new LinePath(pathCoordinates);

                // list of all parameterizations
                List <TravelingParameters> parameterizations = new List <TravelingParameters>();

                // get lane navigation parameterization
                TravelingParameters navigationParameters = this.NavigationParameterization(vehicleState, dpoi, final, lp);
                parameterizations.Add(navigationParameters);

                // update forward tracker and get vehicle parameterizations if forward vehicle exists
                this.forwardMonitor.Update(vehicleState, final, lp);
                if (this.forwardMonitor.ShouldUseForwardTracker())
                {
                    // get vehicle parameterization
                    TravelingParameters vehicleParameters = this.VehicleParameterization(vehicleState, lp, final);
                    parameterizations.Add(vehicleParameters);
                }

                // sort and return funal
                parameterizations.Sort();

                // get the final behavior
                TurnBehavior tb = (TurnBehavior)parameterizations[0].Behavior;

                // get vehicles to ignore
                tb.VehiclesToIgnore = this.forwardMonitor.VehiclesToIgnore;

                // add persistent information about saudi level
                if (turnState.Saudi == SAUDILevel.L1)
                {
                    tb.Decorators = new List <BehaviorDecorator>(tb.Decorators.ToArray());
                    tb.Decorators.Add(new ShutUpAndDoItDecorator(SAUDILevel.L1));
                }

                // add persistent information about turn bounds
                if (!turnState.UseTurnBounds)
                {
                    tb.LeftBound  = null;
                    tb.RightBound = null;
                }

                //  return the behavior
                return(new Maneuver(tb, CoreCommon.CorePlanningState, tb.Decorators, vehicleState.Timestamp));
            }

            #endregion

            #region Final is Zone Waypoint

            else if (turn.FinalGeneric is ArbiterPerimeterWaypoint)
            {
                // get inteconnect path
                Coordinates entryVec = ((ArbiterPerimeterWaypoint)turn.FinalGeneric).Perimeter.PerimeterPolygon.BoundingCircle.center -
                                       turn.FinalGeneric.Position;
                entryVec = entryVec.Normalize(TahoeParams.VL / 2.0);
                LinePath ip = new LinePath(new Coordinates[] { turn.InitialGeneric.Position, turn.FinalGeneric.Position, entryVec + this.turn.FinalGeneric.Position });

                // get distance from end
                double d = ip.DistanceBetween(
                    ip.GetClosestPoint(vehicleState.Front),
                    ip.EndPoint);

                // get speed command
                SpeedCommand sc = null;
                if (d < TahoeParams.VL)
                {
                    sc = new StopAtDistSpeedCommand(d);
                }
                else
                {
                    sc = new ScalarSpeedCommand(SpeedTools.GenerateSpeed(d - TahoeParams.VL, 1.7, turn.MaximumDefaultSpeed));
                }

                // final perimeter waypoint
                ArbiterPerimeterWaypoint apw = (ArbiterPerimeterWaypoint)this.turn.FinalGeneric;

                // get turn params
                LinePath finalPath;
                LineList leftLL;
                LineList rightLL;
                IntersectionToolkit.ZoneTurnInfo(this.turn, (ArbiterPerimeterWaypoint)this.turn.FinalGeneric, out finalPath, out leftLL, out rightLL);

                // hold brake
                IState       nextState = new TurnState(this.turn, this.turn.TurnDirection, null, finalPath, leftLL, rightLL, sc);
                TurnBehavior tb        = new TurnBehavior(null, finalPath, leftLL, rightLL, sc, null, new List <int>(), this.turn.InterconnectId);

                // add persistent information about saudi level
                if (turnState.Saudi == SAUDILevel.L1)
                {
                    tb.Decorators = new List <BehaviorDecorator>(tb.Decorators.ToArray());
                    tb.Decorators.Add(new ShutUpAndDoItDecorator(SAUDILevel.L1));
                }

                // add persistent information about turn bounds
                if (!turnState.UseTurnBounds)
                {
                    tb.LeftBound  = null;
                    tb.RightBound = null;
                }

                // return maneuver
                return(new Maneuver(tb, CoreCommon.CorePlanningState, tb.Decorators, vehicleState.Timestamp));
            }

            #endregion

            #region Unknown

            else
            {
                throw new Exception("unrecognized type: " + turn.FinalGeneric.ToString());
            }

            #endregion
        }
Пример #9
0
        public override void Process(object param)
        {
            if (!base.BeginProcess())
            {
                return;
            }

            if (param is ZoneTravelingBehavior)
            {
                HandleBaseBehavior((ZoneTravelingBehavior)param);
            }

            extraObstacles = GetPerimeterObstacles();

            if (reverseGear)
            {
                ProcessReverse();
                return;
            }

            AbsoluteTransformer absTransform = Services.StateProvider.GetAbsoluteTransformer(curTimestamp);

            // get the vehicle relative path
            LinePath relRecommendedPath = recommendedPath.Transform(absTransform);

            LinePath.PointOnPath zeroPoint = relRecommendedPath.ZeroPoint;

            // get the distance to the end point
            double distToEnd = relRecommendedPath.DistanceBetween(zeroPoint, relRecommendedPath.EndPoint);

            // get the planning distance
            double planningDist = GetPlanningDistance();

            planningDist  = Math.Max(planningDist, 20);
            planningDist -= zeroPoint.Location.Length;
            if (planningDist < 2.5)
            {
                planningDist = 2.5;
            }

            if (distToEnd < planningDist)
            {
                // make the speed command at stop speed command
                behaviorTimestamp = curTimestamp;
                speedCommand      = new StopAtDistSpeedCommand(distToEnd - TahoeParams.FL);
                planningDist      = distToEnd;
                approachSpeed     = recommendedSpeed.Speed;

                settings.endingHeading       = relRecommendedPath.EndSegment.UnitVector.ArcTan;
                settings.endingPositionFixed = true;
                settings.endingPositionMax   = 2;
                settings.endingPositionMin   = -2;
            }
            else
            {
                speedCommand = new ScalarSpeedCommand(recommendedSpeed.Speed);
            }

            // get the distance of the path segment we care about
            LinePath pathSegment   = relRecommendedPath.SubPath(zeroPoint, planningDist);
            double   avoidanceDist = planningDist + 5;

            avoidanceBasePath = relRecommendedPath.SubPath(zeroPoint, ref avoidanceDist);
            if (avoidanceDist > 0)
            {
                avoidanceBasePath.Add(avoidanceBasePath.EndPoint.Location + avoidanceBasePath.EndSegment.Vector.Normalize(avoidanceDist));
            }

            // test if we should clear out of arc mode
            if (arcMode)
            {
                if (TestNormalModeClear(relRecommendedPath, zeroPoint))
                {
                    prevCurvature = double.NaN;
                    arcMode       = false;
                }
            }

            if (Math.Abs(zeroPoint.AlongtrackDistance(Coordinates.Zero)) > 1)
            {
                pathSegment.Insert(0, Coordinates.Zero);
            }
            else
            {
                if (pathSegment[0].DistanceTo(pathSegment[1]) < 1)
                {
                    pathSegment.RemoveAt(0);
                }
                pathSegment[0] = Coordinates.Zero;
            }

            if (arcMode)
            {
                Coordinates relativeGoalPoint = relRecommendedPath.EndPoint.Location;
                ArcVoteZone(relativeGoalPoint, extraObstacles);
                return;
            }

            double pathLength = pathSegment.PathLength;

            if (pathLength < 6)
            {
                double additionalDist = 6.25 - pathLength;
                pathSegment.Add(pathSegment.EndPoint.Location + pathSegment.EndSegment.Vector.Normalize(additionalDist));
            }

            // determine if polygons are to the left or right of the path
            for (int i = 0; i < zoneBadRegions.Length; i++)
            {
                Polygon poly = zoneBadRegions[i].Transform(absTransform);

                int numLeft  = 0;
                int numRight = 0;
                foreach (LineSegment ls in pathSegment.GetSegmentEnumerator())
                {
                    for (int j = 0; j < poly.Count; j++)
                    {
                        if (ls.IsToLeft(poly[j]))
                        {
                            numLeft++;
                        }
                        else
                        {
                            numRight++;
                        }
                    }
                }

                if (numLeft > numRight)
                {
                    // we'll consider this polygon on the left of the path
                    //additionalLeftBounds.Add(new Boundary(poly, 0.1, 0.1, 0));
                }
                else
                {
                    //additionalRightBounds.Add(new Boundary(poly, 0.1, 0.1, 0));
                }
            }

            // TODO: add zone perimeter
            disablePathAngleCheck   = false;
            laneWidthAtPathEnd      = 7;
            settings.Options.w_diff = 3;
            smootherBasePath        = new LinePath();
            smootherBasePath.Add(Coordinates.Zero);
            smootherBasePath.Add(pathSegment.EndPoint.Location);
            AddTargetPath(pathSegment, 0.005);

            settings.maxSpeed = recommendedSpeed.Speed;
            useAvoidancePath  = false;

            SmoothAndTrack(command_label, true);
        }