public void CollSynapsesToInput()
        {
            var parameters = GetDefaultParams();

            parameters.setInputDimensions(new int[] { 32 });
            parameters.setColumnDimensions(new int[] { 128 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 128);

            var sp = new SpatialPooler();

            var mem = new Connections();

            parameters.apply(mem);
            sp.Init(mem);

            int[] activeArray = new int[128];

            int[] inputVector = Helpers.GetRandomVector(32, parameters.Get <Random>(KEY.RANDOM));

            for (int i = 0; i < 100; i++)
            {
                sp.compute(inputVector, activeArray, true);

                var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                var str = Helpers.StringifyVector(activeCols);

                Debug.WriteLine(str);
            }
        }
        public void SPTutorialTest()
        {
            var parameters = GetDefaultParams();

            parameters.setInputDimensions(new int[] { 1000 });
            parameters.setColumnDimensions(new int[] { 2048 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 2048);
            parameters.setGlobalInhibition(false);

            var sp = new SpatialPooler();

            var mem = new Connections();

            parameters.apply(mem);
            sp.Init(mem);

            int[] activeArray = new int[2048];

            int[] inputVector = Helpers.GetRandomVector(1000, parameters.Get <Random>(KEY.RANDOM));

            sp.compute(inputVector, activeArray, true);

            var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

            var str = Helpers.StringifyVector(activeCols);

            Debug.WriteLine(str);
        }
        public void StableOutputWithPersistence()
        {
            var parameters = GetDefaultParams();

            parameters.setInputDimensions(new int[] { 32, 32 });
            parameters.setColumnDimensions(new int[] { 64, 64 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 64 * 64);

            var mem = new Connections();

            parameters.apply(mem);

            var sp = new SpatialPooler();

            sp.Init(mem);


            int[] activeArray = new int[64 * 64];

            int[] inputVector = Helpers.GetRandomVector(32 * 32, parameters.Get <Random>(KEY.RANDOM));

            string str1 = String.Empty;

            for (int i = 0; i < 2; i++)
            {
                sp.compute(inputVector, activeArray, true);

                var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                str1 = Helpers.StringifyVector(activeCols);

                Debug.WriteLine(str1);
            }

            var settings = new JsonSerializerSettings {
                ContractResolver = new ContractResolver(), Formatting = Formatting.Indented
            };

            var jsonSp = JsonConvert.SerializeObject(sp, settings);

            var sp2 = JsonConvert.DeserializeObject <SpatialPooler>(jsonSp, settings);

            activeArray = new int[activeArray.Length];

            for (int i = 10; i < 20; i++)
            {
                sp2.compute(inputVector, activeArray, true);

                var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                var str2 = Helpers.StringifyVector(activeCols);

                Debug.WriteLine(str2);

                Assert.IsTrue(str1.SequenceEqual(str2));
            }
        }
        public void ExperimentTest(string inputBinarizedFile)
        {
            var parameters = SetupParameters(32, 64, 4096, true);

            parameters.Set(KEY.DUTY_CYCLE_PERIOD, 100000);
            parameters.Set(KEY.MAX_BOOST, 1.0);
            parameters.Set(KEY.IS_BUMPUP_WEAKCOLUMNS_DISABLED, true);

            var sp  = new SpatialPooler();
            var mem = new Connections();

            int[] inputVector = NeoCortexUtils.ReadCsvFileTest(inputBinarizedFile).ToArray();
            int[] activeArray = new int[4096];
            parameters.apply(mem);
            sp.Init(mem);

            for (int i = 0; i < 1000; i++)
            {
                sp.compute(inputVector, activeArray, true);
                var activeCols = activeArray.IndexWhere((el) => el == 1);
                var str        = Helpers.StringifyVector(activeCols);
                Debug.WriteLine(str);
            }
        }
        public void SchemaImageClassificationTest()
        {
            var imagesFolder = "..\\..\\..\\TestFiles\\SchemaImageClassification\\image";
            var csvPath      = "..\\..\\..\\TestFiles\\SchemaImageClassification\\csv";

            string[] files = Directory.GetFiles(imagesFolder, "*", SearchOption.AllDirectories);

            string path, name;

            (path, name) = GetPathAndName(files[0]);

            int activeColumn   = 60;
            int inputDimension = 32;

            string[] imageNames = new string[files.Length];

            SpatialPooler sp     = new SpatialPooler();
            Connections   mem    = new Connections();
            Parameters    config = GetParam(inputDimension, activeColumn);

            config.apply(mem);
            sp.Init(mem);

            List <int[]> activeArray = new List <int[]>();// to store n active sequences for n images

            // For each image in this directory
            for (int i = 0; i < files.Length; i++)
            {
                // TODO: activeArray: is a buffer to store active column sequence from spatial pooler
                activeArray.Add(new int[activeColumn * activeColumn]);
                (path, name)  = GetPathAndName(files[i]);
                imageNames[i] = name;

                string binaryImagePath = BinarizeImage(path, inputDimension, inputDimension, csvPath, name);

                int[] inputVector = ReadCsvFileTest(binaryImagePath).ToArray(); // 1D binary of a image

                List <int[]> tempArr = new List <int[]>();
                tempArr.Add(new int[activeColumn * activeColumn]);
                tempArr.Add(new int[activeColumn * activeColumn]);
                int iter = -1;
                int id   = 0;

                while (true) // Train spatial pooler with a single image until stable active column sequence is achieve
                {
                    id = (++iter & 1) == 0 ? 0 : 1;
                    for (int i_x = 0; i_x < tempArr[id].Length; i_x++)
                    {
                        tempArr[id][i_x] = 0;
                    }


                    sp.compute(inputVector, tempArr[id], true);
                    if (iter == 1)
                    {
                        continue;
                    }

                    var d = GetHammingDistance(tempArr[id], tempArr[id ^ 1], false);
                    if (d != double.NegativeInfinity)
                    {
                        Console.WriteLine(d);
                    }

                    /*Note: GetHamming distance will return  a distance between 0 and 100.
                     * if two sequences are the same the return value will be 100. Therefore, the similarity is (100==distance).
                     * To give a four digit precision, < is used instead of ==.
                     */
                    if ((100.0 - d) < 0.00001)
                    {
                        for (int i_x = 0; i_x < tempArr[id].Length; i_x++)
                        {
                            activeArray[i][i_x] = tempArr[id][i_x];
                        }

                        break;
                    }
                }

                Console.WriteLine("finished image : " + i);
            }

            int[]           parent    = new int[files.Length];
            bool[]          hasFolder = new bool[files.Length];
            List <double[]> distance  = new List <double[]>();

            for (int k = 0; k < files.Length; k++)
            {
                distance.Add(new double[files.Length]);
                for (int kk = 0; kk < files.Length; kk++)
                {
                    distance[k].Append(0);
                }
            }

            for (int k = 0; k < files.Length; k++)
            {
                parent[k] = k; hasFolder[k] = false;
            }

            for (int i = 0; i < activeArray.Count; i++)
            {
                for (int j = i; j < activeArray.Count; j++)
                {
                    double d = Math.Min(GetHammingDistance(activeArray[i], activeArray[j], true), GetHammingDistance(activeArray[j], activeArray[i], true));
                    //double d = GetHammingDistance(activeArray[i], activeArray[j], false);

                    distance[i][j] = d;
                    distance[j][i] = d;
                }
            }
            SaveOutput(activeArray, path, imageNames);
            Groupping(distance, imageNames, path);
            Report(distance, imageNames);
        }
        /// <summary>
        /// This function train the input image and write result to text files in folder @"/OutputDutyCycle"
        /// The result text files include speed comparison between global inhibition and local inhibition,
        /// the stable of the out put array (by comparing hamming distance arrays).
        /// Finally this method draw an image of active column as .png file.
        /// This training method is used for testing speed of training with different value of max boost and duty cycle
        /// </summary>
        /// <param name="inputBinarizedFile">input image after binarized</param>
        /// <param name="hammingFile">Path to hamming distance output file</param>
        /// <param name="outputSpeedFile">Path to speed comparison output file</param>
        /// <param name="outputImage">Path to active column after training output file (as .png image file)</param>
        /// <param name="parameters">Parameter setup</param>
        private static void Training(string inputBinarizedFile, string hammingFile, string outputSpeedFile, string outputImage, Parameters parameters)
        {
            int outputImageSize = 1024;
            int topology        = parameters.Get <int[]>(KEY.COLUMN_DIMENSIONS)[0];
            int activeColumn    = topology * topology;
            var stopwatch       = new Stopwatch();

            using (StreamWriter swHamming = new StreamWriter(hammingFile))
            {
                using (StreamWriter swSpeed = new StreamWriter(outputSpeedFile, true))
                {
                    var sp  = new SpatialPooler();
                    var mem = new Connections();

                    parameters.apply(mem);

                    stopwatch.Start();
                    sp.Init(mem);
                    stopwatch.Stop();

                    int   actiColumnLength = activeColumn;
                    int[] activeArray      = new int[actiColumnLength];

                    // Read input csv file into array
                    int[] inputVector = NeoCortexUtils.ReadCsvFileTest(inputBinarizedFile).ToArray();

                    stopwatch.Restart();

                    int   iterations = 1000;
                    int[] oldArray   = new int[activeArray.Length];

                    for (int k = 0; k < iterations; k++)
                    {
                        sp.compute(inputVector, activeArray, true);

                        var activeCols = activeArray.IndexWhere((el) => el == 1);
                        var distance   = MathHelpers.GetHammingDistance(oldArray, activeArray);
                        var similarity = MathHelpers.CalcArraySimilarity(oldArray, activeArray);
                        swHamming.WriteLine($"{distance} | {similarity}");
                        var str = Helpers.StringifyVector(activeCols);
                        Debug.WriteLine(str);
                        oldArray = new int[actiColumnLength];
                        activeArray.CopyTo(oldArray, 0);
                    }

                    var activeArrayString = Helpers.StringifyVector(activeArray);

                    stopwatch.Stop();

                    Debug.WriteLine("Active Array: " + activeArrayString);

                    int    potentialRadius    = parameters.Get <int>(KEY.POTENTIAL_RADIUS);
                    bool   isGlobalInhibition = parameters.Get <bool>(KEY.GLOBAL_INHIBITION);
                    string inhibition         = isGlobalInhibition ? "Global" : "Local";
                    double milliseconds       = stopwatch.ElapsedMilliseconds;
                    double seconds            = milliseconds / 1000;
                    swSpeed.WriteLine($"Column dimension: {topology.ToString().PadRight(5)} |Potential Radius: {potentialRadius}| Inhibition type: {inhibition.PadRight(7)} | Total time: {milliseconds:N0} milliseconds ({seconds:N2} seconds).");

                    int[,] twoDimenArray = ArrayUtils.Make2DArray(activeArray, topology, topology);
                    twoDimenArray        = ArrayUtils.Transpose(twoDimenArray);

                    NeoCortexUtils.DrawBitmap(twoDimenArray, outputImageSize, outputImageSize, outputImage);
                }
            }
        }
        /// <summary>
        /// This function train the input image and write result to text files in folder @"/Output"
        /// The result text files include speed comparison between global inhibition and local inhibition,
        /// the stable of the out put array (by comparing hamming distance arrays).
        /// Finally this method draw an image of active column as .png file.
        /// </summary>
        /// <param name="imageSize">Size of the image (image has same width and height)</param>
        /// <param name="columnDimension">List of sparse space size.(with same width and height)</param>
        /// <param name="inputBinarizedFile">input image after binarized</param>
        /// <param name="hammingFile">Path to hamming distance output file </param>
        /// <param name="outputSpeedFile">Path to speed comparison output file</param>
        /// <param name="activeColumnFile">Path to active column after training output file (as array text)</param>
        /// <param name="outputImage">Path to active column after training output file (as .png image file)</param>
        /// <param name="isGlobalInhibition">is using Global inhibition algorithms or not (if false using local inhibition)</param>
        private static void Training(int imageSize, int columnDimension, string inputBinarizedFile, string hammingFile, string outputSpeedFile, string activeColumnFile, string outputImage, bool isGlobalInhibition)
        {
            int outputImageSize = 1024;
            int activeColumn    = columnDimension * columnDimension;
            var stopwatch       = new Stopwatch();

            using (StreamWriter swHamming = new StreamWriter(hammingFile))
            {
                using (StreamWriter swSpeed = new StreamWriter(outputSpeedFile, true))
                {
                    using (StreamWriter swActiveColumn = new StreamWriter(activeColumnFile))
                    {
                        var parameters = SetupParameters(imageSize, columnDimension, isGlobalInhibition);
                        var sp         = new SpatialPooler();
                        var mem        = new Connections();

                        parameters.apply(mem);

                        stopwatch.Start();
                        sp.Init(mem);
                        stopwatch.Stop();

                        int   actiColumnLength = activeColumn;
                        int[] activeArray      = new int[actiColumnLength];

                        // Read input csv file into array
                        int[] inputVector = NeoCortexUtils.ReadCsvFileTest(inputBinarizedFile).ToArray();

                        stopwatch.Restart();

                        int   iterations = 300;
                        int[] oldArray   = new int[activeArray.Length];

                        for (int k = 0; k < iterations; k++)
                        {
                            sp.compute(inputVector, activeArray, true);

                            var activeCols = activeArray.IndexWhere((el) => el == 1);
                            var distance   = MathHelpers.GetHammingDistance(oldArray, activeArray);
                            var similarity = MathHelpers.CalcArraySimilarity(oldArray, activeArray);
                            swHamming.WriteLine($"{distance} | {similarity}");
                            var str = Helpers.StringifyVector(activeCols);
                            Debug.WriteLine(str);
                            oldArray = new int[actiColumnLength];
                            activeArray.CopyTo(oldArray, 0);
                        }

                        stopwatch.Stop();
                        var activeArrayString = Helpers.StringifyVector(activeArray);
                        swActiveColumn.WriteLine("Active Array: " + activeArrayString);

                        string inhibition   = isGlobalInhibition ? "Global" : "Local";
                        double milliseconds = stopwatch.ElapsedMilliseconds;
                        double seconds      = milliseconds / 1000;
                        swSpeed.WriteLine($"Topology: {columnDimension.ToString().PadRight(5)} | Inhibition type: {inhibition.PadRight(7)} | Total time: {milliseconds:N0} milliseconds ({seconds:N2} seconds).");

                        int[,] twoDimenArray = ArrayUtils.Make2DArray(activeArray, columnDimension, columnDimension);
                        twoDimenArray        = ArrayUtils.Transpose(twoDimenArray);

                        NeoCortexUtils.DrawBitmap(twoDimenArray, outputImageSize, outputImageSize, outputImage);
                    }
                }
            }
        }
        public void SerializationTestWithTrainedData()
        {
            // TODO: see SpatialPooler_Stability_Experiment_3()
            // use it here.

            var parameters = GetDefaultParams();

            parameters.setInputDimensions(new int[] { 16 * 16 });
            parameters.setColumnDimensions(new int[] { 32 * 32 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 32 * 32);
            parameters.setMinPctOverlapDutyCycles(0.01);

            var mem = new Connections();

            parameters.apply(mem);

            var sp1 = new SpatialPooler();

            sp1.Init(mem);


            int[] output = new int[32 * 32];

            int[] inputVector = Helpers.GetRandomVector(16 * 16, parameters.Get <Random>(KEY.RANDOM));

            /*  int [] inputVector =  {
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
             *                               1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
             *                               1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0 };
             *
             */
            string str1 = String.Empty;

            for (int i = 0; i < 5; i++)
            {
                sp1.compute(inputVector, output, true);

                var activeCols1 = ArrayUtils.IndexWhere(output, (el) => el == 1);

                // Remember SDR for every input.
                // if(i >= 4)
                // sdrs.Add(output)

                str1 = Helpers.StringifyVector(activeCols1);

                Debug.WriteLine(str1);
            }


            // if stable
            //  HtmSerializer ser = new HtmSerializer();
            // ser.Serialize(sp, "sp.json");

            //  var sp2 = HtmSerializer.Load("sp.json");
            // Implement a code to compare sdrs of sp2 that have been learned with sp1.


            string ser1 = File.ReadAllText("spTrain1.json");

            //var sp2 = SpatialPooler.Deserializer("spTrain1.json");

            //sp2.Serializer("spTrainDes1.json");

            //string des1 = File.ReadAllText("spTrainDes1.json");

            //Assert.IsTrue(ser1.SequenceEqual(des1));

            //for (int i = 5; i < 10; i++)
            //{
            //    sp1.compute(inputVector, sdrArray, false);

            //    var sdr2 = ArrayUtils.IndexWhere(sdrArray, (el) => el == 1);

            //    // Compare sdr with sdr1 of the same input
            //    var str2 = Helpers.StringifyVector(sdr2);

            //    Debug.WriteLine(str2);
            //    Assert.IsTrue(str1.SequenceEqual(str2));

            //}
        }
Пример #9
0
        public void TestMethod2()
        {
            var parameters = Helpers.GetDefaultParams();;

            var imageWidth  = 60;
            var imageHeight = 60;

            int outputWidth  = 120;
            int outputHeight = 120;

            String trainingImageName        = "Lamp.png";
            String predictionImageNameShift = "Lamp75Shift.PNG";

            bool withTraining = true;

            StringBuilder reportFile = new StringBuilder();

            reportFile.Append($"Given Image Width: {imageWidth}");
            reportFile.AppendLine();
            reportFile.Append($"Given Image Height: {imageHeight}");
            reportFile.AppendLine();
            reportFile.Append($"Given Output Column Width: {outputWidth}");
            reportFile.AppendLine();
            reportFile.Append($"Given Output Column Height: {outputHeight}");
            reportFile.AppendLine();

            parameters.setInputDimensions(new int[] { imageWidth, imageHeight });
            parameters.setColumnDimensions(new int[] { outputWidth, outputHeight });

            parameters.setNumActiveColumnsPerInhArea(0.02 * outputWidth * outputHeight);

            var sp = new SpatialPooler();

            var mem = new Connections();

            parameters.apply(mem);
            sp.init(mem);

            int[] activeArray = new int[outputWidth * outputHeight];

            int[] inputVector = ReadImageData(trainingImageName, imageHeight, imageWidth);

            int[]      newActiveArray       = new int[outputWidth * outputHeight];
            double[][] newActiveArrayDouble = new double[1][];
            newActiveArrayDouble[0] = new double[newActiveArray.Length];

            if (withTraining)
            {
                //Training
                sp.compute(mem, inputVector, activeArray, true);

                var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                double[][] oldActiveArrayDouble = new double[1][];
                oldActiveArrayDouble[0] = new double[activeArray.Length];
                for (int i = 0; i < activeArray.Length; i++)
                {
                    oldActiveArrayDouble[0][i] = activeArray[i];
                }

                int isTrained = 0;

                while (isTrained == 0)
                {
                    sp.compute(mem, inputVector, newActiveArray, true);

                    activeCols = ArrayUtils.IndexWhere(newActiveArray, (el) => el == 1);

                    for (int i = 0; i < newActiveArray.Length; i++)
                    {
                        newActiveArrayDouble[0][i] = newActiveArray[i];
                    }

                    if (GetHammingDistances(oldActiveArrayDouble, newActiveArrayDouble, true)[0] == 100)
                    {
                        isTrained = 1;
                    }
                    else
                    {
                        isTrained            = 0;
                        oldActiveArrayDouble = newActiveArrayDouble;
                    }
                }

                var str = Helpers.StringifyVector(activeCols);

                reportFile.AppendLine();
                reportFile.Append($"Active Columns of Trained Image({trainingImageName}):");
                reportFile.AppendLine();
                reportFile.Append(str);
                reportFile.AppendLine();
                reportFile.Append($"Number of Active Columns of Trained Image({trainingImageName}): {activeCols.Length}");
                reportFile.AppendLine();
            }
            else
            {
                //Without Training
                sp.compute(mem, inputVector, newActiveArray, false);

                var activeCols = ArrayUtils.IndexWhere(newActiveArray, (el) => el == 1);

                var str = Helpers.StringifyVector(activeCols);

                reportFile.AppendLine();
                reportFile.Append($"Active Columns of Untrained Image({trainingImageName}):");
                reportFile.AppendLine();
                reportFile.Append(str);
                reportFile.AppendLine();
                reportFile.Append($"Number of Active Columns of Untrained Image({trainingImageName}): {activeCols.Length}");
                reportFile.AppendLine();
            }


            //Prediction with Shift
            int[] inputVectorShift = ReadImageData(predictionImageNameShift, imageHeight, imageWidth);

            int[] activeArrayShift = new int[outputWidth * outputHeight];

            sp.compute(mem, inputVectorShift, activeArrayShift, false);

            var resActiveColsShift = ArrayUtils.IndexWhere(activeArrayShift, (el) => el == 1);

            var resStrShift = Helpers.StringifyVector(resActiveColsShift);

            for (int i = 0; i < newActiveArray.Length; i++)
            {
                newActiveArrayDouble[0][i] = newActiveArray[i];
            }

            double[][] activeArrayShiftDouble = new double[1][];
            activeArrayShiftDouble[0] = new double[activeArrayShift.Length];
            for (int i = 0; i < activeArrayShift.Length; i++)
            {
                activeArrayShiftDouble[0][i] = activeArrayShift[i];
            }

            double hammingDistancePercentage = GetHammingDistances(newActiveArrayDouble, activeArrayShiftDouble, true)[0];

            reportFile.AppendLine();
            reportFile.Append($"Active Columns of Prediction of Trained Image with Shift({predictionImageNameShift}):");
            reportFile.AppendLine();
            reportFile.Append(resStrShift);
            reportFile.AppendLine();
            reportFile.Append($"Number of Active Columns of Prediction of Trained Image with Shift({predictionImageNameShift}): {resActiveColsShift.Length}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance in % between Trained Image({trainingImageName}) and Prediction of same Image with Shift({predictionImageNameShift}): {100-hammingDistancePercentage}%");
            reportFile.AppendLine();
            reportFile.Append($"Output Overlap for Trained Image({trainingImageName}) and Prediction of same Image with Shift({predictionImageNameShift}): Output Overlap: {hammingDistancePercentage/100}");
            reportFile.AppendLine();

            using (StreamWriter writer = File.CreateText(Path.Combine(AppContext.BaseDirectory, $"Output/report-{trainingImageName}.txt")))
            {
                string text = reportFile.ToString();
                writer.Write(text);
            }
        }
Пример #10
0
        public void TestMethod1()
        {
            var parameters = Helpers.GetDefaultParams();;

            var imageWidth  = 30;
            var imageHeight = 30;

            int outputWidth  = 60;
            int outputHeight = 60;

            String trainingImageName            = "Lamp25Shift.PNG";
            String predictionImageNameShift     = "Lamp25Shift.PNG";
            String predictionImageNameRotate    = "LampRotate.PNG";
            String predictionImageNameDifferent = "Fish.PNG";

            bool withTraining = true;

            StringBuilder reportFile = new StringBuilder();

            reportFile.Append($"Given Image Width: {imageWidth}");
            reportFile.AppendLine();
            reportFile.Append($"Given Image Height: {imageHeight}");
            reportFile.AppendLine();
            reportFile.Append($"Given Output Column Width: {outputWidth}");
            reportFile.AppendLine();
            reportFile.Append($"Given Output Column Height: {outputHeight}");
            reportFile.AppendLine();

            parameters.setInputDimensions(new int[] { imageWidth, imageHeight });
            parameters.setColumnDimensions(new int[] { outputWidth, outputHeight });

            parameters.setNumActiveColumnsPerInhArea(0.02 * outputWidth * outputHeight);

            var sp = new SpatialPooler();

            var mem = new Connections();

            parameters.apply(mem);
            sp.init(mem);

            int[] activeArray = new int[outputWidth * outputHeight];

            int[] inputVector = ReadImageData(trainingImageName, imageHeight, imageWidth);

            int[] newActiveArray = new int[outputWidth * outputHeight];

            if (withTraining)
            {
                //Training
                sp.compute(mem, inputVector, activeArray, true);

                var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                int[] oldActiveArray = activeArray;

                int flag = 0;

                while (flag == 0)
                {
                    sp.compute(mem, inputVector, newActiveArray, true);

                    activeCols = ArrayUtils.IndexWhere(newActiveArray, (el) => el == 1);

                    if (GetHammingDistance(oldActiveArray, newActiveArray) == 0)
                    {
                        flag = 1;
                    }
                    else
                    {
                        flag           = 0;
                        oldActiveArray = newActiveArray;
                    }
                }

                var str = Helpers.StringifyVector(activeCols);

                reportFile.AppendLine();
                reportFile.Append($"Active Columns of Trained Image({trainingImageName}):");
                reportFile.AppendLine();
                reportFile.Append(str);
                reportFile.AppendLine();
                reportFile.Append($"Number of Active Columns of Trained Image({trainingImageName}): {activeCols.Length}");
                reportFile.AppendLine();
            }
            else
            {
                //Without Training
                sp.compute(mem, inputVector, newActiveArray, false);

                var activeCols = ArrayUtils.IndexWhere(newActiveArray, (el) => el == 1);

                var str = Helpers.StringifyVector(activeCols);

                reportFile.AppendLine();
                reportFile.Append($"Active Columns of Untrained Image({trainingImageName}):");
                reportFile.AppendLine();
                reportFile.Append(str);
                reportFile.AppendLine();
                reportFile.Append($"Number of Active Columns of Untrained Image({trainingImageName}): {activeCols.Length}");
                reportFile.AppendLine();
            }


            //Prediction with Shift
            int[] inputVectorShift = ReadImageData(predictionImageNameShift, imageHeight, imageWidth);

            int[] activeArrayShift = new int[outputWidth * outputHeight];

            sp.compute(mem, inputVectorShift, activeArrayShift, false);

            var resActiveColsShift = ArrayUtils.IndexWhere(activeArrayShift, (el) => el == 1);

            var resStrShift = Helpers.StringifyVector(resActiveColsShift);

            int hamDistShift = GetHammingDistance(newActiveArray, activeArrayShift);

            reportFile.AppendLine();
            reportFile.Append($"Active Columns of Prediction of Trained Image with Shift({predictionImageNameShift}):");
            reportFile.AppendLine();
            reportFile.Append(resStrShift);
            reportFile.AppendLine();
            reportFile.Append($"Number of Active Columns of Prediction of Trained Image with Shift({predictionImageNameShift}): {resActiveColsShift.Length}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance between Trained Image({trainingImageName}) and Prediction of same Image with Shift({predictionImageNameShift}): {hamDistShift}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance in % between Trained Image({trainingImageName}) and Prediction of same Image with Shift({predictionImageNameShift}): {Math.Round((double)(hamDistShift * 100) / (outputWidth * outputHeight), 4)}%");
            reportFile.AppendLine();

            //Prediction with 90 degree Rotate
            int[] inputVectorR90 = ReadImageData(predictionImageNameRotate, imageHeight, imageWidth);

            int[] activeArrayR90 = new int[outputWidth * outputHeight];

            sp.compute(mem, inputVectorR90, activeArrayR90, false);

            var resActiveColsR90 = ArrayUtils.IndexWhere(activeArrayR90, (el) => el == 1);

            var resStrR90 = Helpers.StringifyVector(resActiveColsR90);

            int hamDistR90 = GetHammingDistance(newActiveArray, activeArrayR90);

            reportFile.AppendLine();
            reportFile.Append($"Active Columns of Prediction of Trained Image with 90 degrees rotate({predictionImageNameRotate}):");
            reportFile.AppendLine();
            reportFile.Append(resStrR90);
            reportFile.AppendLine();
            reportFile.Append($"Number of Active Columns of Prediction of Trained Image with 90 degrees rotate({predictionImageNameRotate}): {resActiveColsR90.Length}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance between Trained Image({trainingImageName}) and Prediction of same Image with 90 degrees rotate({predictionImageNameRotate}): {hamDistR90}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance in % between Trained Image({trainingImageName}) and Prediction of same Image with 90 degrees rotate({predictionImageNameRotate}): {Math.Round((double)(hamDistR90 * 100) / (outputWidth * outputHeight), 4)}%");
            reportFile.AppendLine();

            //Prediction with Different Image
            int[] inputVectorDifferent = ReadImageData(predictionImageNameDifferent, imageHeight, imageWidth);

            int[] activeArrayDifferent = new int[outputWidth * outputHeight];

            sp.compute(mem, inputVectorDifferent, activeArrayDifferent, false);

            var resActiveColsDifferent = ArrayUtils.IndexWhere(activeArrayDifferent, (el) => el == 1);

            var resStrDifferent = Helpers.StringifyVector(resActiveColsDifferent);

            int hamDistDifferent = GetHammingDistance(newActiveArray, activeArrayDifferent);

            reportFile.AppendLine();
            reportFile.Append($"Active Columns of Prediction of Different Image than Trained Image({predictionImageNameDifferent}):");
            reportFile.AppendLine();
            reportFile.Append(resStrDifferent);
            reportFile.AppendLine();
            reportFile.Append($"Number of Active Columns of Prediction of Different Image than Trained Image({predictionImageNameDifferent}): {resActiveColsDifferent.Length}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance between Trained Image({trainingImageName}) and Prediction of Different Image than Trained Image({predictionImageNameDifferent}): {hamDistDifferent}");
            reportFile.AppendLine();
            reportFile.Append($"Hamming Distance in % between Trained Image({trainingImageName}) and Prediction of Different Image than Trained Image({predictionImageNameDifferent}): {Math.Round((double)(hamDistDifferent * 100) / (outputWidth * outputHeight), 4)}%");
            reportFile.AppendLine();

            //Prediction with Noise of given percentages
            double[] givenNoisePercentages = { 0, 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };

            for (int i = 0; i < givenNoisePercentages.Length; i++)
            {
                int[] oldInputVector = ReadImageData(trainingImageName, imageHeight, imageWidth);

                int[] inputVectorNoisePercent = MakeSomeNoise(oldInputVector, givenNoisePercentages[i] / 100);

                int[] activeArrayNoisePercent = new int[outputWidth * outputHeight];

                MakeBinaryFile(inputVectorNoisePercent, imageHeight, imageWidth, $"{trainingImageName}-Noise{givenNoisePercentages[i]}p");

                sp.compute(mem, inputVectorNoisePercent, activeArrayNoisePercent, false);

                var resActiveColsPercent = ArrayUtils.IndexWhere(activeArrayNoisePercent, (el) => el == 1);

                var resStrPercent = Helpers.StringifyVector(resActiveColsPercent);

                int hamDistNoisePercent = GetHammingDistance(newActiveArray, activeArrayNoisePercent);

                reportFile.AppendLine();
                reportFile.Append($"Active Columns of Prediction of Trained Image({trainingImageName}) with Noise of {givenNoisePercentages[i]} percent:");
                reportFile.AppendLine();
                reportFile.Append(resStrPercent);
                reportFile.AppendLine();
                reportFile.Append($"Number of Active Columns of Prediction of Trained Image({trainingImageName}) with Noise of {givenNoisePercentages[i]} percent: {resActiveColsPercent.Length}");
                reportFile.AppendLine();
                reportFile.Append($"Hamming Distance between Trained Image({trainingImageName}) and Prediction of same Image with Noise of {givenNoisePercentages[i]} percent: {hamDistNoisePercent}");
                reportFile.AppendLine();
                reportFile.Append($"Hamming Distance in % between Trained Image({trainingImageName}) and Prediction of same Image with Noise of {givenNoisePercentages[i]} percent: {Math.Round((double)(hamDistNoisePercent*100) / (outputWidth * outputHeight), 4)}%");
                reportFile.AppendLine();
                reportFile.Append($"Output Overlap versus Input Overlap for Trained Image({trainingImageName}) and Prediction of same Image with Noise of {givenNoisePercentages[i]} percent: Output Overlap: {1 - Math.Round((double)(hamDistNoisePercent * 100) / (outputWidth * outputHeight), 4) / 100}, Input Overlap: {1 - givenNoisePercentages[i] / 100}");
                reportFile.AppendLine();
            }

            using (StreamWriter writer = File.CreateText(Path.Combine(AppContext.BaseDirectory, $"Output/report-{trainingImageName}.txt")))
            {
                string text = reportFile.ToString();
                writer.Write(text);
            }
        }
        // [DataRow("MnistTestImages\\digit7.png", 128, 30)]
        public void LearningimageDoubleShiftStble(string mnistImage, string shiftedImage, int[] imageSize, int[] topologies)
        {
            var path        = Path.Combine(Directory.GetParent(Environment.CurrentDirectory).Parent.Parent.FullName, mnistImage);
            var pathShifted = Path.Combine(Directory.GetParent(Environment.CurrentDirectory).Parent.Parent.FullName, shiftedImage);

            Console.WriteLine("Test started");
            Console.WriteLine(mnistImage);
            Console.WriteLine(shiftedImage);
            const int OutImgSize = 1024;

            int    index1 = mnistImage.IndexOf("\\") + 1;
            int    index2 = mnistImage.IndexOf(".");
            string sub1   = mnistImage.Substring(0, index2);
            string sub2   = mnistImage.Substring(0, index1);
            string name   = mnistImage.Substring(index1, sub1.Length - sub2.Length);

            int    index1Shift = shiftedImage.IndexOf("\\") + 1;
            int    index2Shift = shiftedImage.IndexOf(".");
            string sub1Shift   = shiftedImage.Substring(0, index2Shift);
            string sub2Shift   = shiftedImage.Substring(0, index1Shift);
            string nameShift   = shiftedImage.Substring(index1Shift, sub1Shift.Length - sub2Shift.Length);

            for (int imSizeIndx = 0; imSizeIndx < imageSize.Length; imSizeIndx++)
            {
                Console.WriteLine(String.Format("Image Size: \t{0}", imageSize[imSizeIndx]));

                string testName        = $"{name}_{imageSize[imSizeIndx]}";
                string outputSpeedFile = $"Output\\{testName}_speed.txt";

                string testNameShifted        = $"{nameShift}_{imageSize[imSizeIndx]}";
                string outputSpeedFileShifted = $"Output\\{testNameShifted}_speed.txt";

                string inputBinaryImageFile        = BinarizeImage(path, imageSize[imSizeIndx], testName);
                string inputBinaryImageShiftedFile = BinarizeImage(pathShifted, imageSize[imSizeIndx], testNameShifted);

                //string inputBinaryImageFile = BinarizeImage("Output\\" + mnistImage, imageSize[imSizeIndx], testName);
                for (int topologyIndx = 0; topologyIndx < topologies.Length; topologyIndx++)
                {
                    Console.WriteLine(String.Format("Topology: \t{0}", topologies[topologyIndx]));

                    string finalName         = $"{testName}_{topologies[topologyIndx]}";
                    string outputHamDistFile = $"Output\\{finalName}_hamming.txt";
                    string outputActColFile  = $"Output\\{finalName}_activeCol.txt";

                    string outputImage = $"Output\\{finalName}.png";

                    string finalNameShifted         = $"{testNameShifted}_{topologies[topologyIndx]}";
                    string outputHamDistFileShifted = $"Output\\{finalNameShifted}_hamming.txt";
                    string outputActColFileShifted  = $"Output\\{finalNameShifted}_activeCol.txt";

                    string outputImageShifted = $"Output\\{finalNameShifted}.png";


                    //File.Create(finalName);
                    //Directory.CreateDirectory("Output");
                    //File.Create(outputHamDistFile);
                    //File.Create(outputActColFile);

                    int numOfActCols = 0;
                    var sw           = new Stopwatch();
                    using (StreamWriter swHam = new StreamWriter(outputHamDistFile))
                    {
                        using (StreamWriter swSpeed = new StreamWriter(outputSpeedFile, true))
                        {
                            using (StreamWriter swActCol = new StreamWriter(outputActColFile))
                            {
                                numOfActCols = topologies[topologyIndx] * topologies[topologyIndx];
                                var parameters = GetDefaultParams();
                                parameters.setInputDimensions(new int[] { imageSize[imSizeIndx], imageSize[imSizeIndx] });
                                parameters.setColumnDimensions(new int[] { topologies[topologyIndx], topologies[topologyIndx] });
                                parameters.setNumActiveColumnsPerInhArea(0.02 * numOfActCols);

                                var sp  = new SpatialPooler();
                                var mem = new Connections();

                                parameters.apply(mem);
                                sw.Start();

                                sp.Init(mem);

                                sw.Stop();
                                swSpeed.WriteLine($"{topologies[topologyIndx]}|{(double)sw.ElapsedMilliseconds / (double)1000}");

                                int   actiColLen  = numOfActCols;
                                int[] activeArray = new int[actiColLen];

                                //Read input csv file into array
                                int[] inputVector = NeoCortexUtils.ReadCsvIntegers(inputBinaryImageFile).ToArray();

                                var inputOverlap  = new List <double>();
                                var outputOverlap = new List <double>();

                                int[]      newActiveArray       = new int[topologies[topologyIndx] * topologies[topologyIndx]];
                                double[][] newActiveArrayDouble = new double[1][];
                                newActiveArrayDouble[0] = new double[newActiveArray.Length];

                                //Training
                                sp.compute(inputVector, activeArray, true);

                                var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                                double[][] oldActiveArray = new double[1][];
                                oldActiveArray[0] = new double[activeArray.Length];
                                for (int a = 0; a < activeArray.Length; a++)
                                {
                                    oldActiveArray[0][a] = activeArray[a];
                                }

                                int isTrained = 0;

                                while (isTrained == 0)
                                {
                                    sp.compute(inputVector, newActiveArray, true);

                                    activeCols = ArrayUtils.IndexWhere(newActiveArray, (el) => el == 1);



                                    for (int a = 0; a < newActiveArray.Length; a++)
                                    {
                                        newActiveArrayDouble[0][a] = newActiveArray[a];
                                    }

                                    if (MathHelpers.GetHammingDistance(oldActiveArray, newActiveArrayDouble, true)[0] == 100)
                                    {
                                        isTrained = 1;
                                    }
                                    else
                                    {
                                        isTrained      = 0;
                                        oldActiveArray = newActiveArrayDouble;
                                    }
                                }

                                var str = Helpers.StringifyVector(activeCols);


                                int[] oldInputVector = NeoCortexUtils.ReadCsvIntegers(inputBinaryImageFile).ToArray();

                                int[] inputVectorShifted = NeoCortexUtils.ReadCsvIntegers(inputBinaryImageShiftedFile).ToArray();

                                int[]      activeArrayShifted       = new int[topologies[topologyIndx] * topologies[topologyIndx]];
                                double[][] activeArrayShiftedDouble = new double[1][];
                                activeArrayShiftedDouble[0] = new double[activeArrayShifted.Length];

                                sw.Restart();

                                //Prediction
                                sp.compute(inputVectorShifted, activeArrayShifted, false);

                                var resActiveColsPercent = ArrayUtils.IndexWhere(activeArrayShifted, (el) => el == 1);

                                var resStrPercent = Helpers.StringifyVector(activeArrayShifted);


                                for (int a = 0; a < activeArrayShifted.Length; a++)
                                {
                                    activeArrayShiftedDouble[0][a] = activeArrayShifted[a];
                                }



                                var distance    = MathHelpers.GetHammingDistance(newActiveArrayDouble, activeArrayShiftedDouble, false)[0];
                                var distPercent = ((100 - distance) * 100) / (topologies[topologyIndx] * topologies[topologyIndx]);
                                swHam.WriteLine(distance + "\t" + (100 - distance) + "\t" + distPercent + "\t" + (1 - (distPercent / 100.0)) + "\n");

                                outputOverlap.Add(1 - (distPercent / 100.0));

                                swActCol.WriteLine(String.Format(@"Active Cols: {0}", Helpers.StringifyVector(resActiveColsPercent)));

                                Console.WriteLine(resStrPercent);
                                swActCol.WriteLine("Active Array: " + resStrPercent);

                                sw.Stop();

                                int[,] twoDimenArray = ArrayUtils.Make2DArray <int>(activeArrayShifted, topologies[topologyIndx], topologies[topologyIndx]);
                                twoDimenArray        = ArrayUtils.Transpose(twoDimenArray);

                                NeoCortexUtils.DrawBitmap(twoDimenArray, OutImgSize, OutImgSize, outputImage);
                                //NeoCortexUtils.DrawBitmap(twoDimenArray, OutImgSize, OutImgSize, "D:\\Project_Latest\\FromGit\\se-dystsys-2018-2019-softwareengineering\\outputs\\eight");


                                swActCol.WriteLine("inputOverlaps: " + Helpers.StringifyVector(inputOverlap.ToArray()));

                                swActCol.WriteLine("outputOverlaps: " + Helpers.StringifyVector(outputOverlap.ToArray()));
                            }
                        }
                    }
                }
            }
        }
        //[DataRow("MnistTestImages\\digit7.png", 128, 30)]
        public void CalculateSpeedOfLearningTest(string mnistImage, int[] imageSize, int[] topologies)
        {
            int    index1 = mnistImage.IndexOf("\\") + 1;
            int    index2 = mnistImage.IndexOf(".");
            string sub1   = mnistImage.Substring(0, index2);
            string sub2   = mnistImage.Substring(0, index1);
            string name   = mnistImage.Substring(index1, sub1.Length - sub2.Length);

            for (int imSizeIndx = 0; imSizeIndx < imageSize.Length; imSizeIndx++)
            {
                string testName             = $"{name}_{imageSize[imSizeIndx]}";
                string outputSpeedFile      = $"Output\\{testName}_speed.txt";
                string inputBinaryImageFile = BinarizeImage("Output\\" + mnistImage, imageSize[imSizeIndx], testName);
                for (int topologyIndx = 0; topologyIndx < topologies.Length; topologyIndx++)
                {
                    string finalName         = $"{testName}_{topologies[topologyIndx]}";
                    string outputHamDistFile = $"Output\\{finalName}_hamming.txt";
                    string outputActColFile  = $"Output\\{finalName}_activeCol.txt";

                    string outputImage = $"Output\\{finalName}.png";

                    int numOfActCols = 0;
                    var sw           = new Stopwatch();
                    using (StreamWriter swHam = new StreamWriter(outputHamDistFile))
                    {
                        using (StreamWriter swSpeed = new StreamWriter(outputSpeedFile, true))
                        {
                            using (StreamWriter swActCol = new StreamWriter(outputActColFile))
                            {
                                numOfActCols = topologies[topologyIndx] * topologies[topologyIndx];
                                var parameters = GetDefaultParams();
                                parameters.setInputDimensions(new int[] { imageSize[imSizeIndx], imageSize[imSizeIndx] });
                                parameters.setColumnDimensions(new int[] { topologies[topologyIndx], topologies[topologyIndx] });
                                parameters.setNumActiveColumnsPerInhArea(0.02 * numOfActCols);

                                var sp  = new SpatialPooler();
                                var mem = new Connections();

                                parameters.apply(mem);
                                sw.Start();

                                sp.Init(mem);

                                sw.Stop();
                                swSpeed.WriteLine($"{topologies[topologyIndx]}|{(double)sw.ElapsedMilliseconds / (double)1000}");

                                int   actiColLen  = numOfActCols;
                                int[] activeArray = new int[actiColLen];

                                //Read input csv file into array
                                int[] inputVector = NeoCortexUtils.ReadCsvIntegers(inputBinaryImageFile).ToArray();
                                sw.Restart();

                                int   iterations = 2;
                                int[] oldArray   = new int[activeArray.Length];
                                for (int k = 0; k < iterations; k++)
                                {
                                    sp.compute(inputVector, activeArray, true);

                                    var activeCols = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);
                                    var distance   = MathHelpers.GetHammingDistance(oldArray, activeArray);
                                    swHam.WriteLine(distance + "\n");
                                    var str = Helpers.StringifyVector(activeCols);

                                    oldArray = new int[actiColLen];
                                    activeArray.CopyTo(oldArray, 0);
                                }

                                var activeStr = Helpers.StringifyVector(activeArray);
                                swActCol.WriteLine("Active Array: " + activeStr);

                                sw.Stop();

                                int[,] twoDimenArray = ArrayUtils.Make2DArray <int>(activeArray, topologies[topologyIndx], topologies[topologyIndx]);
                                twoDimenArray        = ArrayUtils.Transpose(twoDimenArray);

                                NeoCortexUtils.DrawBitmap(twoDimenArray, OutImgSize, OutImgSize, outputImage);
                            }
                        }
                    }
                }
            }
        }
Пример #13
0
        public void TestMethod1()
        {
            //number of binary vectors that will be used to train the SP
            int numExamples = 10;

            //2 dimensional input vector. Each row will be used as one-dimensional vector
            int[,] inputVectors = new int[numExamples, 1000];

            //2 dimensional output binary vector
            int[,] outputColumns = new int[numExamples, 2048];

            //Feeding here the input vector with random binary numbers
            for (int i = 0; i < numExamples; i++)
            {
                for (int k = 0; k < 1000; k++)
                {
                    var random = new Random();
                    inputVectors[i, k] = random.Next(0, 2);
                }
            }

            //Spatial Pooler initialization and configuration
            var parameters = Helpers.GetDefaultParams();

            parameters.setInputDimensions(new int[] { 1000 });
            parameters.setColumnDimensions(new int[] { 2048 });

            var sp  = new SpatialPooler();
            var mem = new Connections();

            parameters.apply(mem);
            sp.init(mem);

            //One dimensional input vector initialized with binary numbers
            int[] inputVector = Helpers.GetRandomVector(1000,
                                                        parameters.Get <Random>(KEY.RANDOM));

            //Array that will be expose to SP to active some of its columns
            int[] activeCols = new int[2048];

            //List for active columns scores
            List <int> activeColScores = new List <int>();

            //Learning is turned off
            sp.compute(mem, inputVector, activeCols, false);

            //overlaps score of the active columns
            var overlaps = sp.calculateOverlap(mem, inputVector);

            //Sorting reversely overlaps arrays then writing it to the text file overlapBeforeTraining.txt
            overlaps = reverseSort(overlaps);
            WriteIntArrayToFile("overlapBeforeTraining.txt", overlaps);

            //we put the overlap score of each active column in a list called activeColScores
            for (int i = 0; i < 2048; i++)
            {
                if (activeCols[i] != 0)
                {
                    activeColScores.Add(overlaps[i]);
                }
            }


            int numberOfActivCols = 0;

            //counting the number of active columns
            foreach (int i in activeColScores)
            {
                numberOfActivCols = numberOfActivCols + 1;
            }

            // Array to take the number of active columns to write it to file for plotting purpose
            int[] numberOfActiveColumns = new int[] { 1 };
            numberOfActiveColumns[0] = numberOfActivCols;


            int[] inputVectorsRowk = new int[] { };

            int[] outputColumnsRowk = new int[] { };

            //number of times the vectors are exposed to the SP
            int epochs = 1;


            //the "numExamples" input binary vectors are exposed to the SP "epochs" times to train it
            for (int i = 0; i < epochs; i++)
            {
                for (int k = 0; k < numExamples; k++)

                {
                    inputVectorsRowk  = GetRow(inputVectors, k);
                    outputColumnsRowk = GetRow(outputColumns, k);
                    sp.compute(mem, inputVectorsRowk, outputColumnsRowk, true);
                }
            }



            overlaps = sp.calculateOverlap(mem, inputVectorsRowk);

            overlaps = reverseSort(overlaps);

            WriteIntArrayToFile("overlapAfterTraining.txt", overlaps);

            WriteIntArrayToFile("numberOfActCols.txt", numberOfActiveColumns);

            //overlap before and after training , numberOfActCols needed for graphs
            runPythonCode2("overlapBeforeTraining.txt", "overlapAfterTraining.txt", "numberOfActCols.txt");

            int[,] inputVectorsCorrupted  = new int[numExamples, 1000];
            int[,] outputColumnsCorrupted = new int[numExamples, 2048];


            float[] Noise = new float[] { 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 };


            double[] percentOverlapInputs  = new double[Noise.Length];
            double[] percentOverlapOutputs = new double[Noise.Length];

            int[] inputVectorsCorruptedRow0  = GetRow(inputVectorsCorrupted, 0);
            int[] inputVectorsRow0           = GetRow(inputVectors, 0);
            int[] outputColumnsRow0          = GetRow(outputColumns, 0);
            int[] outputColumnsCorruptedRow0 = GetRow(outputColumnsCorrupted, 0);

            resetVector(inputVectorsRow0, inputVectorsCorruptedRow0);

            for (int i = 0; i < Noise.Length; i++)
            {
                inputVectorsCorruptedRow0 = corruptVector(ref inputVectorsRow0, Noise[i]);

                sp.compute(mem, inputVectorsRow0, outputColumnsRow0, false);
                sp.compute(mem, inputVectorsCorruptedRow0, outputColumnsCorruptedRow0, false);

                percentOverlapInputs[i]  = percentOverlap(inputVectorsRow0, inputVectorsCorruptedRow0);
                percentOverlapOutputs[i] = percentOverlap(outputColumnsRow0, outputColumnsCorruptedRow0);
            }

            WriteDoubleArrayToFile("percentOverlapInputs.txt", percentOverlapInputs);
            WriteDoubleArrayToFile("percentOverlapOutputs.txt", percentOverlapOutputs);

            runPythonCode1("percentOverlapInputs.txt", "percentOverlapOutputs.txt");
        }
        public void SerializationTestWithTrainedData()
        {
            var parameters = GetDefaultParams();

            parameters.setInputDimensions(new int[] { 16 * 16 });
            parameters.setColumnDimensions(new int[] { 32 * 32 });
            parameters.setNumActiveColumnsPerInhArea(0.02 * 32 * 32);
            parameters.setMinPctOverlapDutyCycles(0.01);

            var mem = new Connections();

            parameters.apply(mem);

            var sp1 = new SpatialPooler();

            sp1.init(mem);


            int[] activeArray = new int[32 * 32];

            int[] inputVector = Helpers.GetRandomVector(16 * 16, parameters.Get <Random>(KEY.RANDOM));

            /*  int [] inputVector =  {
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
             *                               1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,
             *                               1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
             *                               1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0 };
             *
             */
            string str1 = String.Empty;

            for (int i = 0; i < 5; i++)
            {
                sp1.compute(inputVector, activeArray, true);

                var activeCols1 = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                str1 = Helpers.StringifyVector(activeCols1);

                Debug.WriteLine(str1);
            }

            /*  JsonSerializerSettings settings = new JsonSerializerSettings
             * {
             *
             *    DefaultValueHandling = DefaultValueHandling.Include,
             *    ObjectCreationHandling = ObjectCreationHandling.Auto,
             *    ReferenceLoopHandling = ReferenceLoopHandling.Serialize,
             *    ConstructorHandling = ConstructorHandling.AllowNonPublicDefaultConstructor,
             *    TypeNameHandling = TypeNameHandling.Auto
             *
             * };
             */
            //  var jsConverted = JsonConvert.SerializeObject(sp1, Formatting.Indented,  settings);

            //   string file2 = "spSerializeTrain-newtonsoft.json";
            //  File.WriteAllText(file2, jsConverted);

            sp1.Serializer("spTrain1.json");
            string ser1 = File.ReadAllText("spTrain1.json");

            var sp2 = SpatialPooler.Deserializer("spTrain1.json");

            sp2.Serializer("spTrainDes1.json");

            string des1 = File.ReadAllText("spTrainDes1.json");

            Assert.IsTrue(ser1.SequenceEqual(des1));

            //    SpatialPooler sp2 = JsonConvert.DeserializeObject<SpatialPooler>(File.ReadAllText(file2), settings);

            for (int i = 5; i < 10; i++)
            {
                sp2.compute(inputVector, activeArray, false);

                var activeCols2 = ArrayUtils.IndexWhere(activeArray, (el) => el == 1);

                var str2 = Helpers.StringifyVector(activeCols2);

                Debug.WriteLine(str2);
                Assert.IsTrue(str1.SequenceEqual(str2));
            }
            sp2.Serializer("spTrain2.json");
            string ser2 = File.ReadAllText("spTrain2.json");

            //  Assert.IsTrue(ser2.SequenceEqual(des1));

            /*    string serializedSecondPooler = JsonConvert.SerializeObject(sp2, Formatting.Indented, settings);
             *  string fileSecondPooler = "spSerializeTrain-secondpooler-newtonsoft.json";
             *  File.WriteAllText(fileSecondPooler, serializedSecondPooler);
             *
             *  SpatialPooler sp3 = JsonConvert.DeserializeObject<SpatialPooler>(File.ReadAllText(fileSecondPooler), settings);
             *  string serializedThirdPooler = JsonConvert.SerializeObject(sp3, Formatting.Indented, settings);
             *
             *
             *  Assert.IsTrue(serializedThirdPooler.SequenceEqual(serializedSecondPooler), "Third and second poolers are not equal");
             *  Assert.IsTrue(jsConverted.SequenceEqual(serializedSecondPooler), "First and second poolers are not equal");
             */
        }
Пример #15
0
        public void TestMethod1()
        {
            //Arrays initialization
            int[] inputX1  = new int[1000];
            int[] inputX2  = new int[1000];
            int[] outputX1 = new int[2048];
            int[] outputX2 = new int[2048];

            //feeding inputX1 with random binary numbers
            for (int j = 0; j < 1000; j++)
            {
                var random = new Random();
                inputX1[j] = random.Next(0, 2);
            }

            //Copying inputX1 to inputX2 to get 2 identical vectors
            for (int i = 0; i < 1000; i++)
            {
                inputX2[i] = inputX1[i];
            }


            // Array containing noise levels (in percentage)
            float[] Noise = new float[] { 0, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 };

            // Arrays where input and output overlap results will be stored
            double[] percentOverlapArrayInput  = new double[Noise.Length];
            double[] percentOverlapArrayOutput = new double[Noise.Length];

            //Initialization and configuration of the spatial pooler
            var parameters = Helpers.GetDefaultParams();

            parameters.setInputDimensions(new int[] { 1000 });
            parameters.setColumnDimensions(new int[] { 2048 });
            var sp  = new SpatialPooler();
            var mem = new Connections();

            parameters.apply(mem);
            sp.init(mem);

            for (int j = 0; j < Noise.Length; j++)
            {
                // inputX1 is equivalent to inputX2 before the loop and can be then used as the reference one to which noise will be added
                inputX2 = corruptVector(ref inputX1, Noise[j]);

                //Feeding outputX1 and outputX2 to the spatial pooler
                sp.compute(mem, inputX1, outputX1, false);
                sp.compute(mem, inputX2, outputX2, false);

                //computing the input and output overlap and putting results in arrays
                percentOverlapArrayInput[j]  = percentOverlap(inputX1, inputX2);
                percentOverlapArrayOutput[j] = percentOverlap(outputX1, outputX2);
            }

            // Writing the input overlap and output overlap arrays to text files
            WriteArrayToFile("OverlapInput.txt", percentOverlapArrayInput);
            WriteArrayToFile("OverlapOutput.txt", percentOverlapArrayOutput);

            //calling this method here will launch create-plots-Part2b script that will plot graphs with data contained in the files
            runPythonCode("OverlapInput.txt", "OverlapOutput.txt");
        }