public void SoftMaxLayer_Backward()
        {
            var batchSize       = 1;
            var width           = 28;
            var height          = 28;
            var depth           = 3;
            var numberOfClasses = 10;
            var random          = new Random(232);

            var sut = new SoftMaxLayer(numberOfClasses);

            sut.Initialize(width, height, depth, batchSize, Initialization.GlorotUniform, random);

            var input = Matrix <float> .Build.Random(batchSize, numberOfClasses, random.Next());

            sut.Forward(input);

            var delta = Matrix <float> .Build.Random(batchSize, numberOfClasses, random.Next());

            var actual = sut.Backward(delta);

            Trace.WriteLine(string.Join(", ", actual.ToColumnMajorArray()));

            var expected = Matrix <float> .Build.Dense(batchSize, numberOfClasses, new float[] { -0.3891016f, -0.6150756f, 0.0618184f, -0.2334358f, 1.544145f, -1.01483f, 0.6160479f, 0.3225261f, -1.007966f, -0.1111263f });

            MatrixAsserts.AreEqual(expected, actual);
        }
Пример #2
0
        public void ForwardBackwardTest()
        {
            Shape        shape = new Shape(new[] { 1, SoftMaxLayerTest.weights.Length });
            SoftMaxLayer layer = new SoftMaxLayer(shape);

            Session session = new Session();

            Tensor x = new Tensor(null, shape);

            x.Set(SoftMaxLayerTest.weights);
            Tensor y = layer.Forward(session, new[] { x })[0];

            Helpers.AreArraysEqual(SoftMaxLayerTest.activations, y.Weights);

            // unroll the graph
            y.Gradient[0] = 1.0f;
            session.Unroll();

            ////float[] expectedDx = SoftMaxLayerTest.activations.Select((w, i) => i == 0 ? w - 1.0f : w).ToArray();
            Helpers.AreArraysEqual(new float[] { 1.0f, 0, 0, 0 }, x.Gradient);
        }
        public void SoftMaxLayer_Forward()
        {
            var batchSize       = 1;
            var width           = 28;
            var height          = 28;
            var depth           = 3;
            var numberOfClasses = 10;
            var random          = new Random(232);

            var sut = new SoftMaxLayer(numberOfClasses);

            sut.Initialize(width, height, depth, batchSize, Initialization.GlorotUniform, random);

            var input = Matrix <float> .Build.Random(batchSize, numberOfClasses, random.Next());

            var actual = sut.Forward(input);

            Trace.WriteLine(string.Join(", ", actual.ToColumnMajorArray()));

            var expected = Matrix <float> .Build.Dense(batchSize, numberOfClasses, new float[] { 0.06976377f, 0.1327717f, 0.02337802f, 0.3784489f, 0.0777365f, 0.05847027f, 0.1072708f, 0.0503228f, 0.0624512f, 0.03938601f });

            MatrixAsserts.AreEqual(expected, actual);
        }