Пример #1
0
        public void SquareMatrixSVD()
        {
            for (int d = 4; d < 50; d += 7)
            {
                SquareMatrix A = CreateSquareRandomMatrix(d, d);

                SingularValueDecomposition SVD = A.SingularValueDecomposition();

                Assert.IsTrue(SVD.Dimension == A.Dimension);

                ColumnVector x = new ColumnVector(d);
                for (int i = 0; i < d; i++)
                {
                    x[i] = i;
                }
                ColumnVector b = A * x;

                ColumnVector b1 = SVD.LeftTransformMatrix().Transpose() * b;
                for (int i = 0; i < SVD.Rank; i++)
                {
                    b1[i] = b1[i] / SVD.SingularValue(i);
                }
                ColumnVector b2 = SVD.RightTransformMatrix() * b1;

                ColumnVector y = SVD.Solve(b);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(x, y));
            }
        }
Пример #2
0
        public void HilbertMatrixSVD()
        {
            int          n = 4;
            SquareMatrix H = new SquareMatrix(n);

            for (int r = 0; r < n; r++)
            {
                for (int c = 0; c < n; c++)
                {
                    H[r, c] = 1.0 / (r + c + 1);
                }
            }

            SingularValueDecomposition SVD = H.SingularValueDecomposition();

            for (int i = 0; i < n; i++)
            {
                Console.WriteLine(SVD.SingularValue(i));
            }

            SquareMatrix S = SVD.LeftTransformMatrix().Transpose() * H * SVD.RightTransformMatrix();

            for (int i = 0; i < SVD.Dimension; i++)
            {
                Console.WriteLine(S[i, i]);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(S[i, i], SVD.SingularValue(i)));
            }
        }
        public void SmallSVD()
        {
            SquareMatrix A0 = new SquareMatrix(1);

            A0[0, 0] = 0.0;
            SingularValueDecomposition SVD0 = A0.SingularValueDecomposition();

            Console.WriteLine(SVD0.SingularValue(0));
            Assert.IsTrue(SVD0.SingularValue(0) == 0.0);

            SquareMatrix A1 = new SquareMatrix(1);

            A1[0, 0] = 1.0;
            SingularValueDecomposition SVD1 = A1.SingularValueDecomposition();

            Console.WriteLine(SVD1.SingularValue(0));
            //Assert.IsTrue(SVD1.SingularValue(0) == 1.0);

            SquareMatrix A2 = new SquareMatrix(2);

            A2[0, 0] = 0.0; A2[0, 1] = 1.0;
            A2[1, 0] = 0.0; A2[1, 1] = 1.0;
            // Singular values Sqrt(2), 0
            SingularValueDecomposition SVD2 = A2.SingularValueDecomposition();
            SquareMatrix S2 = SVD2.LeftTransformMatrix().Transpose() * A2 * SVD2.RightTransformMatrix();

            for (int i = 0; i < SVD2.Dimension; i++)
            {
                Console.WriteLine("{0} {1}", S2[i, i], SVD2.SingularValue(i));
                Assert.IsTrue(TestUtilities.IsNearlyEqual(S2[i, i], SVD2.SingularValue(i)));
            }
        }
        public void RandomRectangularSVD()
        {
            for (int c = 1; c < 64; c += 11)
            {
                Console.WriteLine(c);

                RectangularMatrix R = GenerateRandomMatrix(64, c);

                SingularValueDecomposition SVD = R.SingularValueDecomposition();

                Assert.IsTrue(SVD.RowCount == R.RowCount);
                Assert.IsTrue(SVD.ColumnCount == SVD.ColumnCount);
                Assert.IsTrue(SVD.Dimension == SVD.ColumnCount);

                SquareMatrix U = SVD.LeftTransformMatrix();
                Assert.IsTrue(U.Dimension == R.RowCount);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(U.Transpose() * U, TestUtilities.CreateSquareUnitMatrix(U.Dimension)));

                SquareMatrix V = SVD.RightTransformMatrix();
                Assert.IsTrue(V.Dimension == R.ColumnCount);
                Assert.IsTrue(TestUtilities.IsNearlyEqual(V.Transpose() * V, TestUtilities.CreateSquareUnitMatrix(V.Dimension)));

                RectangularMatrix S = U.Transpose() * R * V;
                for (int i = 0; i < SVD.Dimension; i++)
                {
                    double w = SVD.SingularValue(i);
                    Console.WriteLine("  {0} {1}", w, S[i, i]);
                    Assert.IsTrue(w >= 0.0);
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(S[i, i], w));
                    Assert.IsTrue(TestUtilities.IsNearlyEqual(R * SVD.RightSingularVector(i), w * SVD.LeftSingularVector(i)));
                }
            }
        }
        public void PC()
        {
            Random rng = new Random(1);
            double s   = 1.0 / Math.Sqrt(2.0);

            MultivariateSample MS = new MultivariateSample(2);
            RectangularMatrix  R  = new RectangularMatrix(1000, 2);

            for (int i = 0; i < 1000; i++)
            {
                double r1 = 2.0 * rng.NextDouble() - 1.0;
                double r2 = 2.0 * rng.NextDouble() - 1.0;
                double x  = r1 * 4.0 * s - r2 * 9.0 * s;
                double y  = r1 * 4.0 * s + r2 * 9.0 * s;
                R[i, 0] = x; R[i, 1] = y;
                MS.Add(x, y);
            }

            Console.WriteLine("x {0} {1}", MS.Column(0).Mean, MS.Column(0).Variance);
            Console.WriteLine("y {0} {1}", MS.Column(1).Mean, MS.Column(1).Variance);

            Console.WriteLine("SVD");

            SingularValueDecomposition SVD = R.SingularValueDecomposition();

            for (int i = 0; i < SVD.Dimension; i++)
            {
                Console.WriteLine("{0} {1}", i, SVD.SingularValue(i));
                ColumnVector v = SVD.RightSingularVector(i);
                Console.WriteLine("  {0} {1}", v[0], v[1]);
            }

            Console.WriteLine("PCA");

            PrincipalComponentAnalysis PCA = MS.PrincipalComponentAnalysis();

            Console.WriteLine("Dimension = {0} Count = {1}", PCA.Dimension, PCA.Count);
            for (int i = 0; i < PCA.Dimension; i++)
            {
                PrincipalComponent PC = PCA.Component(i);
                Console.WriteLine("  {0} {1} {2} {3}", PC.Index, PC.Weight, PC.VarianceFraction, PC.CumulativeVarianceFraction);
                RowVector v = PC.NormalizedVector();
                Console.WriteLine("  {0} {1}", v[0], v[1]);
            }

            // reconstruct
            SquareMatrix U  = SVD.LeftTransformMatrix();
            SquareMatrix V  = SVD.RightTransformMatrix();
            double       x1 = U[0, 0] * SVD.SingularValue(0) * V[0, 0] + U[0, 1] * SVD.SingularValue(1) * V[0, 1];

            Console.WriteLine("x1 = {0} {1}", x1, R[0, 0]);
            double y1 = U[0, 0] * SVD.SingularValue(0) * V[1, 0] + U[0, 1] * SVD.SingularValue(1) * V[1, 1];

            Console.WriteLine("y1 = {0} {1}", y1, R[0, 1]);
            double x100 = U[100, 0] * SVD.SingularValue(0) * V[0, 0] + U[100, 1] * SVD.SingularValue(1) * V[0, 1];

            Console.WriteLine("x100 = {0} {1}", x100, R[100, 0]);
            double y100 = U[100, 0] * SVD.SingularValue(0) * V[1, 0] + U[100, 1] * SVD.SingularValue(1) * V[1, 1];

            Console.WriteLine("y100 = {0} {1}", y100, R[100, 1]);

            ColumnVector d1 = U[0, 0] * SVD.SingularValue(0) * SVD.RightSingularVector(0) +
                              U[0, 1] * SVD.SingularValue(1) * SVD.RightSingularVector(1);

            Console.WriteLine("d1 = ({0} {1})", d1[0], d1[1]);
            ColumnVector d100 = U[100, 0] * SVD.SingularValue(0) * SVD.RightSingularVector(0) +
                                U[100, 1] * SVD.SingularValue(1) * SVD.RightSingularVector(1);

            Console.WriteLine("d100 = ({0} {1})", d100[0], d100[1]);

            Console.WriteLine("compare");
            MultivariateSample     RS  = PCA.TransformedSample();
            IEnumerator <double[]> RSE = RS.GetEnumerator();

            RSE.MoveNext();
            double[] dv1 = RSE.Current;
            Console.WriteLine("{0} {1}", dv1[0], dv1[1]);
            Console.WriteLine("{0} {1}", U[0, 0], U[0, 1]);
            RSE.Dispose();
        }