Пример #1
0
 public void Mutate()
 {
     for (int i = 0; i < _jobsLength; i++)
     {
         if (SimpleRNG.GetUniform() < _mutationRate)
         {
             int r    = SimpleRNG.Next(0, _jobsLength);
             int temp = JobGenes[i];
             JobGenes[i] = JobGenes[r];
             JobGenes[r] = temp;
             // Mutate the delay time
             r = SimpleRNG.Next(0, _modesLength);
             double mutatedDelay = 0;
             //mutatedDelay = SimpleRNG.GetExponential(_delayMean);
             mutatedDelay = SimpleRNG.GetNormal(TimeGenes[r], 1.0);
             //mutatedDelay = _rand.NextDouble() * _delayMean;
             if (mutatedDelay < 0.0)
             {
                 mutatedDelay = 0.0;
             }
             TimeGenes[r] = mutatedDelay;
         }
     }
     //Mutate the Mode vector:
     for (int i = 0; i < _modesLength; i++)
     {
         if (SimpleRNG.GetUniform() < _mutationRate)
         {
             ModeGenes[i] = SimpleRNG.Next(0, _numberOfModes);
         }
     }
 }
Пример #2
0
            public void Crossover(ref ScheduleGenome p2, ref ScheduleGenome o1)
            {
                int cutpoint = SimpleRNG.Next(0, _jobsLength);

                //Debug.Write(Environment.NewLine + "Distance between " + p1 + " - " + p2 + ": " + population[p1].Distance(population[p2]));

                for (int i = 0; i < _jobsLength; i++)
                {
                    o1.JobGenes[i] = JobGenes[i];
                }

                Debug.Assert(o1.IsValid(), "Invalid creature before crossover");

                List <int> remainder = new List <int>(p2.JobGenes);

                for (int i = 0; i < cutpoint; i++)
                {
                    remainder.Remove(JobGenes[i]);
                }
                for (int i = cutpoint; i < _jobsLength; i++)
                {
                    o1.JobGenes[i] = remainder[i - cutpoint];
                }

                Debug.Assert(o1.IsValid(), "Invalid creature after crossover");

                RealCrossover(ref p2, ref o1);
                CombinationCrossover(ref p2, ref o1);
            }
Пример #3
0
            public void RealCrossover(ref ScheduleGenome p2, ref ScheduleGenome o1)
            {
                switch (realCrossover)
                {
                case RealCrossoverOp.MeanWithNoise:
                    // Mean-with-noise Crossover:
                    for (int i = 0; i < _modesLength; i++)
                    {
                        double mean = TimeGenes[i] + p2.TimeGenes[i];
                        mean            = mean / 2.0;
                        o1.TimeGenes[i] = SimpleRNG.GetNormal(mean, 0.5);
                        if (o1.TimeGenes[i] < 0.0)
                        {
                            o1.TimeGenes[i] = 0.0;
                        }
                    }
                    break;

                case RealCrossoverOp.Uniform:
                    // Uniform Crossover:
                    int cutpoint = SimpleRNG.Next(0, _modesLength + 1);
                    for (int i = 0; i < cutpoint; i++)
                    {
                        o1.TimeGenes[i] = TimeGenes[i];
                    }
                    for (int i = cutpoint; i < _modesLength; i++)
                    {
                        o1.TimeGenes[i] = p2.TimeGenes[i];
                    }
                    break;
                }
            }
Пример #4
0
            public void RandomInit()
            {
                List <int> randarray = new List <int>();

                for (int i = 0; i < _jobsLength; i++)
                {
                    randarray.Add(i);
                }
                for (int i = 0; i < _jobsLength; i++)
                {
                    int r = SimpleRNG.Next(0, _jobsLength - i);
                    JobGenes[i] = randarray[r];
                    randarray.RemoveAt(r);
                }
                for (int i = 0; i < _timesLength; i++)
                {
                    if (SimpleRNG.GetUniform() < _delayRate)
                    {
                        TimeGenes[i] = SimpleRNG.GetExponential(_delayMean);
                    }
                    else
                    {
                        TimeGenes[i] = 0.0;
                    }
                    ModeGenes[i] = SimpleRNG.Next(0, _numberOfModes);
                }

                fitness = -1;
            }
Пример #5
0
            public void CombinationCrossover(ref ScheduleGenome p2, ref ScheduleGenome o1)
            {
                int cutpoint = SimpleRNG.Next(0, _modesLength);

                for (int i = 0; i < cutpoint; i++)
                {
                    o1.ModeGenes[i] = p2.ModeGenes[i];
                }
                for (int i = cutpoint; i < _modesLength; i++)
                {
                    o1.ModeGenes[i] = ModeGenes[i];
                }
            }
Пример #6
0
            private int SelectParent()
            {
                int p = 0;

                switch (parentSelection)
                {
                case ParentSelectionOp.FitnessProportional:
                    double totalFitness = 0;
                    for (int i = 0; i < _popsize; i++)
                    {
                        totalFitness += population[i].fitness;
                    }
                    //double r = _rand.NextDouble() * totalFitness;
                    double r            = SimpleRNG.GetUniform() * totalFitness;
                    double runningTotal = population[p].fitness;
                    while (runningTotal > r)
                    {
                        p++;
                        runningTotal += population[p].fitness;
                    }
                    break;

                case ParentSelectionOp.Tournament:
                    int k = _popsize / 10;
                    //p = _rand.Next(_popsize);
                    p = (int)(SimpleRNG.GetUniform() * _popsize);
                    double bestfitness = population[p].fitness;
                    for (int i = 0; i < k; i++)
                    {
                        int px = SimpleRNG.Next(0, _popsize);
                        if (population[px].fitness > bestfitness)
                        {
                            bestfitness = population[px].fitness;
                            p           = px;
                        }
                    }
                    break;
                }

                return(p);
            }