Пример #1
0
        public static WaveletCollection FromWaveletData(IEnumerable <double> waveletData)
        {
            int index = 0;

            double smoothingCoefficient = waveletData.ElementAt(index++);

            List <List <double> > decomposition = new List <List <double> >();

            int levelCount = (int)Scalars.Logarithm(2, waveletData.Count());

            for (int levelIndex = 0; levelIndex < levelCount; levelIndex++)
            {
                List <double> level = new List <double>();

                int itemCount = (int)Scalars.Exponentiate(2, levelIndex);

                for (int itemIndex = 0; itemIndex < itemCount; itemIndex++)
                {
                    level.Add(waveletData.ElementAt(index++));
                }

                decomposition.Add(level);
            }

            return(new WaveletCollection(smoothingCoefficient, decomposition));
        }
Пример #2
0
        // Intended for synthesis
        // Input \ Output | Real | Imaginary
        // ---------------|------|----------
        // Real           |  +   |     -
        // Imaginary      |  +   |     +
        static MatrixComplex GetReverseTransformation(int size)
        {
            MatrixComplex transformation = new MatrixComplex(size, size);

            Complex factor = (2 * Math.PI / size) * Complex.ImaginaryOne;

            for (int row = 0; row < transformation.RowCount; row++)
            {
                for (int column = 0; column < transformation.ColumnCount; column++)
                {
                    transformation[row, column] = Scalars.Exponentiate(-factor * row * column);
                }
            }

            return((1 / Scalars.SquareRoot(size)) * transformation);
        }
Пример #3
0
        public WaveletCollection(double smoothingCoefficient, IEnumerable <IEnumerable <double> > decomposition)
        {
            if (decomposition == null)
            {
                throw new ArgumentNullException("levels");
            }
            for (int levelIndex = 0; levelIndex < decomposition.Count(); levelIndex++)
            {
                if (decomposition.ElementAt(levelIndex).Count() != (int)Scalars.Exponentiate(2, levelIndex))
                {
                    throw new ArgumentException("parameter 'decomposition' doesn't have the correct format");
                }
            }

            this.smoothingCoefficient = smoothingCoefficient;
            this.decomposition        = decomposition;
        }
Пример #4
0
 public double NextExponential(double minimum, double maximum)
 {
     return(Scalars.Logarithm(NextDouble(Scalars.Exponentiate(minimum), Scalars.Exponentiate(maximum))));
 }