Пример #1
0
    private Vector3 GetRandomShift()
    {
        float x = RandomGaussian.Next(0.0f, deviation);
        float z = RandomGaussian.Next(0.0f, deviation);

        return(new Vector3(x, 0, z));
    }
        public static Network BuildNetwork(Random random,
                                           ICostFunction costFunction, IRegularizationFunction regularizationFunction,
                                           WeightIntializerType weightIntializerType,
                                           DropoutLayerOptions dropoutLayerOptions,
                                           int inputNeuronCount, int outputNeuronCount, params int[] hiddenLayerCounts)
        {
            Network network = new Network(costFunction, regularizationFunction,
                                          dropoutLayerOptions, random);

            network.InputLayer = InputLayer.BuildInputLayer(null, inputNeuronCount, random);

            Layer          previousLayer     = network.InputLayer;
            int            dropoutLayerIndex = 1;
            bool           isDropoutLayer    = false;
            IWeightBuilder weightBuilder     = null;

            for (int c = 0; c < hiddenLayerCounts.Length; c++)
            {
                isDropoutLayer = dropoutLayerOptions.DropoutLayerIndices.Contains(dropoutLayerIndex);
                int currentLayerCount = hiddenLayerCounts[c];

                switch (weightIntializerType)
                {
                case WeightIntializerType.RandomGaussianWithNeuronCount:
                    weightBuilder = new RandomGaussianWithNeuronCount(previousLayer.Neurons.Count, 0, random);
                    break;

                case WeightIntializerType.RandomNormal:
                    weightBuilder = new RandomGaussian(0, 1, random);
                    break;
                }

                HiddenLayer hiddenLayer = HiddenLayer.BuildHiddenLayer(weightBuilder, previousLayer,
                                                                       currentLayerCount, isDropoutLayer ? dropoutLayerOptions.ProbabilityOfDropout : 0, random);

                network.HiddenLayers.Add(hiddenLayer);
                previousLayer = hiddenLayer;

                dropoutLayerIndex++;
            }

            isDropoutLayer = dropoutLayerOptions.DropoutLayerIndices.Contains(dropoutLayerIndex);

            switch (weightIntializerType)
            {
            case WeightIntializerType.RandomGaussianWithNeuronCount:
                weightBuilder = new RandomGaussianWithNeuronCount(previousLayer.Neurons.Count, 0, random);
                break;

            case WeightIntializerType.RandomNormal:
                weightBuilder = new RandomGaussian(0, 1, random);
                break;
            }

            network.OutputLayer = OutputLayer.BuildOutputLayer(weightBuilder, (HiddenLayer)previousLayer,
                                                               outputNeuronCount, isDropoutLayer ? dropoutLayerOptions.ProbabilityOfDropout : 0, random);

            return(network);
        }
    private Vector3 findSpreadDirection(Vector3 aim)
    {
        float   spread1 = RandomGaussian.GetGaussian(0.0f, 2.0f, -horizontalSpread / 2.0f, horizontalSpread / 2.0f);
        float   spread2 = RandomGaussian.GetGaussian(0.0f, 2.0f, -verticalSpread / 2.0f, verticalSpread / 2.0f);
        Vector3 retAim  = Quaternion.Euler(spread1, spread2, spread1) * aim;

        retAim.Normalize();

        return(retAim);
    }
Пример #4
0
    private int[,] GenerateEnzymeArray(int numGroups, int numEnz)
    {
        int[,] protVals = new int[numGroups, numEnz];

        // healthy baseline, normally distributed
        int            mean = 15; int sigma = 3;
        RandomGaussian randGaussian = new RandomGaussian(sigma, mean);
        // disease difference
        float fractionDiff = .1f;                                                   // fraction of total enzyme types that are going to be different
        int   numDiff      = Mathf.CeilToInt(Global.sim.limit_enzs * fractionDiff); // number of enzyme types that are different
        int   delta        = 1;

        for (int g = 0; g < numGroups; g++)
        {
            int[] ei = Global.RandPerm(numEnz);
            for (int e = 0; e < numEnz; e++)
            {
                int value;
                if (g == 0)
                {
                    value = Mathf.Max(0, Mathf.RoundToInt(randGaussian.Get()));
                }                                                                           // healthy baseline
                else if (e < numDiff)
                {
                    value = protVals[0, ei[e]] + RandSign(delta);
                }                                                                       // perturbation
                else
                {
                    value = protVals[0, ei[e]];
                }                                    // no perturbation

                protVals[g, ei[e]] = Mathf.Max(0, value);
            }
        }

        return(protVals);
    }
Пример #5
0
 private float GetRawChangeLength(int min, int length)
 {
     // return (int)Math.Round(RandomGaussian.NextGaussian(toMinMax*_meanRange, (float)Math.Sqrt(toMinMax), 0f, toMinMax)); //doubtful about sqrt
     return(RandomGaussian.NextGaussian(length * _meanRange, (length - min) * 0.2f, min, length));
 }