private static RandomForestClassificationSolution GridSearchWithCrossvalidation(IClassificationProblemData problemData, int numberOfCrossvalidationFolds, out RFParameter bestParameters, int seed = 3141519) { double rmsError, outOfBagRmsError, relClassificationError, outOfBagRelClassificationError; bestParameters = RandomForestUtil.GridSearch(problemData, numberOfFolds, shuffleFolds, randomForestParameterRanges, seed, maximumDegreeOfParallelism); var model = RandomForestModel.CreateClassificationModel(problemData, problemData.TrainingIndices, bestParameters.N, bestParameters.R, bestParameters.M, seed, out rmsError, out outOfBagRmsError, out relClassificationError, out outOfBagRelClassificationError); return((RandomForestClassificationSolution)model.CreateClassificationSolution(problemData)); }
public void RecreateTree() { tree = RandomForestModel.trainTree(); }
public string ApplyTree(Tuple <int, string, string, DateTime, double, double, double, Tuple <double, int, string> > data) { return(RandomForestModel.applyTree(tree, data)); }
public PredictionLogic() { tree = RandomForestModel.trainTree(); }