static void Main(string[] args) { // get RI instances predefined in the config settings RILogManager.Get("ViewerOnly").SendMessage("Only the Viewer will get this message"); RILogManager.Get("File1Only").SendMessage("Only TextFile1 and BinaryFile1 will get this message"); RILogManager.Get("File2Only").SendMessage("Only TextFile2 and BinaryFile2 will get this message"); // by code - example 1a using (ReflectInsight ri = new ReflectInsight("Example1")) { ri.SetDestinationBindingGroup("ViewerOnlyBinding"); ri.SendMessage("Only the Viewer will get this message"); } // by code - example 1b using (ReflectInsight ri = new ReflectInsight("Example1")) { ri.SetDestinationBindingGroup("File1OnlyBinding"); ri.SendMessage("Only TextFile1 and BinaryFile1 will get this message"); } // you can create instances on the fly and used them throughout the application as needed RILogManager.Add("AnotherViewerOnlyInstance", "Another Category", String.Empty, "ViewerOnlyBinding"); RILogManager.Add("AnotherFile1OnlyInstance", "Another Category", String.Empty, "File1OnlyBinding"); RILogManager.Get("AnotherViewerOnlyInstance").SendMessage("Only the Viewer will get this message"); RILogManager.Get("AnotherFile1OnlyInstance").SendMessage("Only TextFile1 and BinaryFile1 will get this message"); }
// MNIST accuracy tester public static void Run(double accuracyThreshold = .9979D) { MnistData mnistData = new MnistData(28); Real maxAccuracy = 0; //Number of middle layers const int N = 30; //It operates at 1000 similar to the reference link but it is slow at the CPU ReflectInsight ri = new ReflectInsight("Test21"); ri.Enabled = true; RILogManager.Add("Test21", "Test21"); RILogManager.SetDefault("Test21"); //FunctionStack nn = new FunctionStack("Test21", // new Linear(28 * 28, 1024, name: "l1 Linear"), // new Sigmoid(name: "l1 Sigmoid"), // new Linear(1024, 10, name: "l2 Linear") //); //nn.SetOptimizer(new MomentumSGD()); FunctionStack nn = new FunctionStack("Test7", new Linear(true, 28 * 28, N, name: "l1 Linear"), // L1 new BatchNormalization(true, N, name: "l1 BatchNorm"), new ReLU(name: "l1 ReLU"), new Linear(true, N, N, name: "l2 Linear"), // L2 new BatchNormalization(true, N, name: "l2 BatchNorm"), new ReLU(name: "l2 ReLU"), new Linear(true, N, N, name: "l3 Linear"), // L3 new BatchNormalization(true, N, name: "l3 BatchNorm"), new ReLU(name: "l3 ReLU"), new Linear(true, N, N, name: "l4 Linear"), // L4 new BatchNormalization(true, N, name: "l4 BatchNorm"), new ReLU(name: "l4 ReLU"), new Linear(true, N, N, name: "l5 Linear"), // L5 new BatchNormalization(true, N, name: "l5 BatchNorm"), new ReLU(name: "l5 ReLU"), new Linear(true, N, N, name: "l6 Linear"), // L6 new BatchNormalization(true, N, name: "l6 BatchNorm"), new ReLU(name: "l6 ReLU"), new Linear(true, N, N, name: "l7 Linear"), // L7 new BatchNormalization(true, N, name: "l7 BatchNorm"), new ReLU(name: "l7 ReLU"), new Linear(true, N, N, name: "l8 Linear"), // L8 new BatchNormalization(true, N, name: "l8 BatchNorm"), new ReLU(name: "l8 ReLU"), new Linear(true, N, N, name: "l9 Linear"), // L9 new BatchNormalization(true, N, name: "l9 BatchNorm"), new ReLU(name: "l9 ReLU"), new Linear(true, N, N, name: "l10 Linear"), // L10 new BatchNormalization(true, N, name: "l10 BatchNorm"), new ReLU(name: "l10 ReLU"), new Linear(true, N, N, name: "l11 Linear"), // L11 new BatchNormalization(true, N, name: "l11 BatchNorm"), new ReLU(name: "l11 ReLU"), new Linear(true, N, N, name: "l12 Linear"), // L12 new BatchNormalization(true, N, name: "l12 BatchNorm"), new ReLU(name: "l12 ReLU"), new Linear(true, N, N, name: "l13 Linear"), // L13 new BatchNormalization(true, N, name: "l13 BatchNorm"), new ReLU(name: "l13 ReLU"), new Linear(true, N, N, name: "l14 Linear"), // L14 new BatchNormalization(true, N, name: "l14 BatchNorm"), new ReLU(name: "l14 ReLU"), new Linear(true, N, 10, name: "l15 Linear") // L15 ); // 0.0005 - 97.5, 0.001, 0.00146 double alpha = 0.001; double beta1 = 0.9D; double beta2 = 0.999D; double epsilon = 1e-8; nn.SetOptimizer(new Adam("Adam21", alpha, beta1, beta2, epsilon)); Stopwatch sw = new Stopwatch(); sw.Start(); for (int epoch = 0; epoch < 3; epoch++) { Real totalLoss = 0; long totalLossCount = 0; for (int i = 1; i < TRAIN_DATA_COUNT + 1; i++) { TestDataSet datasetX = mnistData.GetRandomXSet(BATCH_DATA_COUNT, 28, 28); Real sumLoss = Trainer.Train(nn, datasetX.Data, datasetX.Label, new SoftmaxCrossEntropy()); totalLoss = sumLoss; totalLossCount++; if (i % 20 == 0) { TestDataSet datasetY = mnistData.GetRandomYSet(TEST_DATA_COUNT, 28); Real accuracy = Trainer.Accuracy(nn, datasetY.Data, datasetY.Label, false); if (accuracy > maxAccuracy) { maxAccuracy = accuracy; } Passed = (accuracy >= accuracyThreshold); sw.Stop(); ri.ViewerSendWatch("Iteration", "epoch " + (epoch + 1) + " of 3, batch " + i + " of " + TRAIN_DATA_COUNT); ri.ViewerSendWatch("Max Accuracy", maxAccuracy * 100 + "%"); ri.ViewerSendWatch("Current Accuracy", accuracy * 100 + "%"); ri.ViewerSendWatch("Total Loss ", totalLoss / totalLossCount); ri.ViewerSendWatch("Elapsed Time", Helpers.FormatTimeSpan(sw.Elapsed)); ri.ViewerSendWatch("Accuracy Threshold", Passed ? "Passed" : "Not Passed"); sw.Start(); } } sw.Stop(); ri.SendInformation("Total Processing Time: " + Helpers.FormatTimeSpan(sw.Elapsed)); } }