Пример #1
0
        public void Initialize()
        {
            // Dimension Value Pairs:
            sayWhat = World.NewDimensionValuePair("YourAction", "What do you want to do?");

            // External Action Chunks:
            sayCooperate = World.NewExternalActionChunk("Cooperate");
            sayDefect    = World.NewExternalActionChunk("Defect");

            // placeholder
            // GoalChunk salute = World.NewGoalChunk("Salute");
            // GoalChunk bidFarewell = World.NewGoalChunk("Bid Farewell");

            // WM Actions:
            wmuacC = World.NewWorkingMemoryUpdateActionChunk("Remember my opponent cooperated");
            wmuacD = World.NewWorkingMemoryUpdateActionChunk("Remember my opponent defected");

            DeclarativeChunk dcoc = World.NewDeclarativeChunk("My opponent cooperated");
            DeclarativeChunk dcod = World.NewDeclarativeChunk("My opponent defected");

            wmuacC.Add(WorkingMemory.RecognizedActions.SET_RESET, dcoc);
            wmuacD.Add(WorkingMemory.RecognizedActions.SET_RESET, dcod);

            // Set up a two agent model (meaning two agents with the same setup, playing against each other)
            Alice = World.NewAgent("Alice");
            Bob   = World.NewAgent("Bob");

            // Simulating environment will determine inputs to each agent based on what each agent does..

            // Feedback is determined by payoff matrix..

            payoff = new int [2, 2, 2];

            // Doing this the hard way. Could set this up all in-line above, but this makes the table
            // more explicit in terms of how we want to use it.
            // The payoff matrix here is called "Friend or Foe", about the simplest case
            // indices mean: FOR-WHICH-AGENT, WHAT-ALICE-DOES, WHAT-BOB-DOES
            payoff[_ALICE, _COOPERATE, _COOPERATE] = 1;
            payoff[_ALICE, _COOPERATE, _DEFECT]    = 0;
            payoff[_ALICE, _DEFECT, _COOPERATE]    = 2;
            payoff[_ALICE, _DEFECT, _DEFECT]       = 0;
            payoff[_BOB, _COOPERATE, _COOPERATE]   = 1;
            payoff[_BOB, _COOPERATE, _DEFECT]      = 2;
            payoff[_BOB, _DEFECT, _COOPERATE]      = 0;
            payoff[_BOB, _DEFECT, _DEFECT]         = 0;

            maxpay = 2;

            results = new int[_TRIALS, 2, 2];

            // Set up a Q-learning Net =
            // -- Eligibility Condition = True if "What do you want to do?" is in input, otherwise False
            // -- Input = "My opponent cooperated", "My opponent defected", "What do you want to do?"
            // -- Output = "I want to defect", "I want to cooperate"
            //
            // Also, RER is turned ON

            QBPNetwork net_A = AgentInitializer.InitializeImplicitDecisionNetwork(Alice, QBPNetwork.Factory, QNetEC);

            net_A.Input.Add(sayWhat);
            net_A.Input.Add(sayCooperate);
            net_A.Input.Add(sayDefect);
            net_A.Output.Add(sayCooperate);
            net_A.Output.Add(sayDefect);

            Alice.Commit(net_A);
            net_A.Parameters.LEARNING_RATE = 1;
            Alice.ACS.Parameters.PERFORM_RER_REFINEMENT            = true; // it's true by default anyway
            Alice.ACS.Parameters.LEVEL_SELECTION_METHOD            = ActionCenteredSubsystem.LevelSelectionMethods.COMBINED;
            Alice.ACS.Parameters.LEVEL_SELECTION_OPTION            = ActionCenteredSubsystem.LevelSelectionOptions.FIXED;
            Alice.ACS.Parameters.FIXED_FR_LEVEL_SELECTION_MEASURE  = 1;
            Alice.ACS.Parameters.FIXED_BL_LEVEL_SELECTION_MEASURE  = 1;
            Alice.ACS.Parameters.FIXED_RER_LEVEL_SELECTION_MEASURE = 1;
            Alice.ACS.Parameters.WM_UPDATE_ACTION_PROBABILITY      = 1;

            // Rules (2 rules) =
            // Rule 1:
            // -- Condition = "Your opponent cooperated"
            // -- Action = Set "My opponent cooperated" in WM
            // Rule 2:
            // -- Condition = "Your opponent defected"
            // -- Action = Set "My opponent defect" in WM

            FixedRule ruleA1 = AgentInitializer.InitializeActionRule(Alice, FixedRule.Factory, wmuacC, FRSC);
            FixedRule ruleA2 = AgentInitializer.InitializeActionRule(Alice, FixedRule.Factory, wmuacD, FRSC);

            Alice.Commit(ruleA1);
            Alice.Commit(ruleA2);

            QBPNetwork net_B = AgentInitializer.InitializeImplicitDecisionNetwork(Bob, QBPNetwork.Factory, QNetEC);

            net_B.Input.Add(sayWhat);
            net_B.Input.Add(sayCooperate);
            net_B.Input.Add(sayDefect);
            net_B.Output.Add(sayCooperate);
            net_B.Output.Add(sayDefect);

            Bob.Commit(net_B);

            // Use Weighted Combination
            // NO partial match on TL
            net_B.Parameters.LEARNING_RATE                       = 1;
            Bob.ACS.Parameters.PERFORM_RER_REFINEMENT            = true;
            Bob.ACS.Parameters.LEVEL_SELECTION_METHOD            = ActionCenteredSubsystem.LevelSelectionMethods.COMBINED;
            Bob.ACS.Parameters.LEVEL_SELECTION_OPTION            = ActionCenteredSubsystem.LevelSelectionOptions.FIXED;
            Bob.ACS.Parameters.FIXED_FR_LEVEL_SELECTION_MEASURE  = 1;
            Bob.ACS.Parameters.FIXED_BL_LEVEL_SELECTION_MEASURE  = 1;
            Bob.ACS.Parameters.FIXED_RER_LEVEL_SELECTION_MEASURE = 1;
            Bob.ACS.Parameters.WM_UPDATE_ACTION_PROBABILITY      = 1;

            FixedRule ruleB1 = AgentInitializer.InitializeActionRule(Bob, FixedRule.Factory, wmuacC, FRSC);
            FixedRule ruleB2 = AgentInitializer.InitializeActionRule(Bob, FixedRule.Factory, wmuacD, FRSC);

            Bob.Commit(ruleB1);
            Bob.Commit(ruleB2);

            // Initially using the same parameters for RER as Full Hello World
            RefineableActionRule.GlobalParameters.SPECIALIZATION_THRESHOLD_1 = -.6;
            RefineableActionRule.GlobalParameters.GENERALIZATION_THRESHOLD_1 = -.1;
            RefineableActionRule.GlobalParameters.INFORMATION_GAIN_OPTION    = RefineableActionRule.IGOptions.PERFECT;

            /*
             * Note -- What should be seems is that when you pass in "Your opponent…",
             * the agent should return the "Do Nothing" external action
             * (since it performed an internal WM action)..
             * However, you can just ignore this either way..
             */
        }
Пример #2
0
        public void Initialize(Groups group)
        {
            World.Initialize();
            John = World.NewAgent();

            QBPNetwork idn = AgentInitializer.InitializeImplicitDecisionNetwork(John, QBPNetwork.Factory);

            World.NewDimensionValuePair("Target P", target);
            World.NewDimensionValuePair("Current P", target);
            World.NewExternalActionChunk(target);

            for (double i = 0; i < 12; i++)
            {
                if (World.GetDimensionValuePair("Target P", i) == null)
                {
                    idn.Input.Add(World.NewDimensionValuePair("Target P", i));
                    idn.Input.Add(World.NewDimensionValuePair("Current P", i));
                    idn.Input.Add(World.NewExternalActionChunk(i));
                    idn.Output.Add(World.GetActionChunk(i));
                }
                else
                {
                    idn.Input.Add(World.GetDimensionValuePair("Target P", i));
                    idn.Input.Add(World.GetDimensionValuePair("Current P", i));
                    idn.Input.Add(World.GetActionChunk(i));
                    idn.Output.Add(World.GetActionChunk(i));
                }
            }

            foreach (double i in As)
            {
                World.NewDimensionValuePair("A", i);
            }
            foreach (double i in Bs)
            {
                World.NewDimensionValuePair("B", i);
            }
            foreach (double i in Cs)
            {
                World.NewDimensionValuePair("C", i);
            }

            switch (group)
            {
            case Groups.VERBALIZATION:
                idn.Parameters.POSITIVE_MATCH_THRESHOLD = 1;
                RefineableActionRule.GlobalParameters.POSITIVE_MATCH_THRESHOLD   = 1;
                RefineableActionRule.GlobalParameters.GENERALIZATION_THRESHOLD_1 = 1;
                RefineableActionRule.GlobalParameters.SPECIALIZATION_THRESHOLD_1 = .5;
                threshold_4 = .5;
                break;

            case Groups.MEMORY:
                for (double i = 0; i < 12; i++)
                {
                    ExternalActionChunk w = (ExternalActionChunk)World.GetActionChunk((double)rand.Next(12));
                    var p = World.GetDimensionValuePair("Current P", FactoryOutput(i, (double)w.LabelAsIComparable));
                    ExternalActionChunk w1  = (ExternalActionChunk)World.GetActionChunk(Math.Round((target + p.Value + NoiseOptions[rand.Next(3)]) / 2));
                    FixedRule           mfr = AgentInitializer.InitializeActionRule(John, FixedRule.Factory, w1, MemoryGroup_SupportCalculator);

                    mfr.GeneralizedCondition.Add(p, true);
                    mfr.GeneralizedCondition.Add(w, true);
                    John.Commit(mfr);
                }
                goto default;

            case Groups.SIMPLE_RULE:
                for (double i = 0; i < 12; i++)
                {
                    FixedRule sfr = AgentInitializer.InitializeActionRule(John, FixedRule.Factory, World.GetActionChunk(i), SimpleRule_SupportCalculator);
                    John.Commit(sfr);
                }
                goto default;

            default:
                idn.Parameters.LEARNING_RATE = .05;
                idn.Parameters.DISCOUNT      = .95;
                John.ACS.Parameters.SELECTION_TEMPERATURE = .09;
                idn.Parameters.POSITIVE_MATCH_THRESHOLD   = 1;
                RefineableActionRule.GlobalParameters.GENERALIZATION_THRESHOLD_1 = 2;
                RefineableActionRule.GlobalParameters.SPECIALIZATION_THRESHOLD_1 = 1.2;
                RefineableActionRule.GlobalParameters.POSITIVE_MATCH_THRESHOLD   = 1;
                threshold_4 = .2;
                break;
            }

            RefineableActionRule.GlobalParameters.INFORMATION_GAIN_OPTION = RefineableActionRule.IGOptions.PERFECT;

            John.Commit(idn);
        }