Пример #1
0
        public void DeriveExpressions()
        {
            var formatter = new InfixExpressionFormatter();
            var parser    = new InfixExpressionParser();

            Assert.AreEqual("0", Derive("3", "x"));
            Assert.AreEqual("1", Derive("x", "x"));
            Assert.AreEqual("10", Derive("10*x", "x"));
            Assert.AreEqual("10", Derive("x*10", "x"));
            Assert.AreEqual("(2*'x')", Derive("x*x", "x"));
            Assert.AreEqual("((('x' * 'x') * 2) + ('x' * 'x'))", Derive("x*x*x", "x")); // simplifier does not merge (x*x)*2 + x*x  to 3*x*x
            Assert.AreEqual("0", Derive("10*x", "y"));
            Assert.AreEqual("20", Derive("10*x+20*y", "y"));
            Assert.AreEqual("6", Derive("2*3*x", "x"));
            Assert.AreEqual("(10*'y')", Derive("10*x*y+20*y", "x"));
            Assert.AreEqual("(1 / (SQR('x') * (-1)))", Derive("1/x", "x"));
            Assert.AreEqual("('y' / (SQR('x') * (-1)))", Derive("y/x", "x"));
            Assert.AreEqual("((((-2*'x') + (-1)) * ('a' + 'b')) / SQR(('x' + ('x' * 'x'))))",
                            Derive("(a+b)/(x+x*x)", "x"));
            Assert.AreEqual("((((-2*'x') + (-1)) * ('a' + 'b')) / SQR(('x' + SQR('x'))))", Derive("(a+b)/(x+SQR(x))", "x"));
            Assert.AreEqual("EXP('x')", Derive("exp(x)", "x"));
            Assert.AreEqual("(EXP((3*'x')) * 3)", Derive("exp(3*x)", "x"));
            Assert.AreEqual("(1 / 'x')", Derive("log(x)", "x"));
            Assert.AreEqual("(1 / 'x')", Derive("log(3*x)", "x"));                                            // 3 * 1/(3*x)
            Assert.AreEqual("(1 / ('x' + (0.333333333333333*'y')))", Derive("log(3*x+y)", "x"));              // simplifier does not try to keep fractions
            Assert.AreEqual("(1 / (SQRT(((3*'x') + 'y')) * 0.666666666666667))", Derive("sqrt(3*x+y)", "x")); // 3 / (2 * sqrt(3*x+y)) = 1 / ((2/3) * sqrt(3*x+y))
            Assert.AreEqual("(COS((3*'x')) * 3)", Derive("sin(3*x)", "x"));
            Assert.AreEqual("(SIN((3*'x')) * (-3))", Derive("cos(3*x)", "x"));
            Assert.AreEqual("(1 / (SQR(COS((3*'x'))) * 0.333333333333333))", Derive("tan(3*x)", "x")); // diff(tan(f(x)), x) = 1.0 / cos²(f(x)), simplifier puts constant factor into the denominator

            Assert.AreEqual("((9*'x') / ABS((3*'x')))", Derive("abs(3*x)", "x"));
            Assert.AreEqual("(SQR('x') * 3)", Derive("cube(x)", "x"));
            Assert.AreEqual("(1 / (SQR(CUBEROOT('x')) * 3))", Derive("cuberoot(x)", "x"));

            Assert.AreEqual("0", Derive("(a+b)/(x+SQR(x))", "y")); // df(a,b,x) / dy = 0


            Assert.AreEqual("('a' * 'b' * 'c')", Derive("a*b*c*d", "d"));
            Assert.AreEqual("('a' / ('b' * 'c' * SQR('d') * (-1)))", Derive("a/b/c/d", "d"));

            Assert.AreEqual("('x' * ((SQR(TANH(SQR('x'))) * (-1)) + 1) * 2)", Derive("tanh(sqr(x))", "x")); // (2*'x'*(1 - SQR(TANH(SQR('x'))))

            {
                // special case: Inv(x) using only one argument to the division symbol
                // f(x) = 1/x
                var root    = new ProgramRootSymbol().CreateTreeNode();
                var start   = new StartSymbol().CreateTreeNode();
                var div     = new Division().CreateTreeNode();
                var varNode = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode.Weight       = 1.0;
                varNode.VariableName = "x";
                div.AddSubtree(varNode);
                start.AddSubtree(div);
                root.AddSubtree(start);
                var t = new SymbolicExpressionTree(root);
                Assert.AreEqual("(1 / (SQR('x') * (-1)))",
                                formatter.Format(DerivativeCalculator.Derive(t, "x")));
            }

            {
                // special case: multiplication with only one argument
                var root    = new ProgramRootSymbol().CreateTreeNode();
                var start   = new StartSymbol().CreateTreeNode();
                var mul     = new Multiplication().CreateTreeNode();
                var varNode = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode.Weight       = 3.0;
                varNode.VariableName = "x";
                mul.AddSubtree(varNode);
                start.AddSubtree(mul);
                root.AddSubtree(start);
                var t = new SymbolicExpressionTree(root);
                Assert.AreEqual("3",
                                formatter.Format(DerivativeCalculator.Derive(t, "x")));
            }

            {
                // division with multiple arguments
                // div(x, y, z) is interpreted as (x / y) / z
                var root     = new ProgramRootSymbol().CreateTreeNode();
                var start    = new StartSymbol().CreateTreeNode();
                var div      = new Division().CreateTreeNode();
                var varNode1 = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode1.Weight       = 3.0;
                varNode1.VariableName = "x";
                var varNode2 = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode2.Weight       = 4.0;
                varNode2.VariableName = "y";
                var varNode3 = (VariableTreeNode)(new Variable().CreateTreeNode());
                varNode3.Weight       = 5.0;
                varNode3.VariableName = "z";
                div.AddSubtree(varNode1); div.AddSubtree(varNode2); div.AddSubtree(varNode3);
                start.AddSubtree(div);
                root.AddSubtree(start);
                var t = new SymbolicExpressionTree(root);

                Assert.AreEqual("(('y' * 'z' * 60) / (SQR('y') * SQR('z') * 400))",    // actually 3 / (4y  5z) but simplifier is not smart enough to cancel numerator and denominator
                                                                                       // 60 y z / y² z² 20² == 6 / y z 40 == 3 / y z 20
                                formatter.Format(DerivativeCalculator.Derive(t, "x")));
                Assert.AreEqual("(('x' * 'z' * (-60)) / (SQR('y') * SQR('z') * 400))", // actually 3x * -(4 5 z) / (4y 5z)² = -3x / (20 y² z)
                                                                                       // -3 4 5 x z / 4² y² 5² z² = -60 x z / 20² z² y² ==    -60 x z / y² z² 20²
                                formatter.Format(DerivativeCalculator.Derive(t, "y")));
                Assert.AreEqual("(('x' * 'y' * (-60)) / (SQR('y') * SQR('z') * 400))",
                                formatter.Format(DerivativeCalculator.Derive(t, "z")));
            }
        }
        /// <summary>
        /// Takes two parent individuals P0 and P1.
        /// Randomly choose a node i from the first parent, then for each matching node j from the second parent, calculate the behavioral distance based on the range:
        /// d(i,j) = 0.5 * ( abs(max(i) - max(j)) + abs(min(i) - min(j)) ).
        /// Next, assign probabilities for the selection of a node j based on the inversed and normalized behavioral distance, then make a random weighted choice.
        /// </summary>
        public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1,
                                                    ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, T problemData, IList <int> rows, int maxDepth, int maxLength)
        {
            var crossoverPoints0 = new List <CutPoint>();

            parent0.Root.ForEachNodePostfix((n) => {
                // the if clauses prevent the root or the startnode from being selected, although the startnode can be the parent of the node being swapped.
                if (n.Parent != null && n.Parent != parent0.Root)
                {
                    crossoverPoints0.Add(new CutPoint(n.Parent, n));
                }
            });

            var crossoverPoint0 = crossoverPoints0.SampleRandom(random);
            int level           = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
            int length          = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();

            var allowedBranches = new List <ISymbolicExpressionTreeNode>();

            parent1.Root.ForEachNodePostfix((n) => {
                if (n.Parent != null && n.Parent != parent1.Root)
                {
                    if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
                    {
                        allowedBranches.Add(n);
                    }
                }
            });

            if (allowedBranches.Count == 0)
            {
                return(parent0);
            }

            var dataset = problemData.Dataset;

            // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
            var    rootSymbol = new ProgramRootSymbol();
            var    startSymbol = new StartSymbol();
            var    tree0 = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol); // this will change crossoverPoint0.Child.Parent
            double min0 = 0.0, max0 = 0.0;

            foreach (double v in interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows))
            {
                if (min0 > v)
                {
                    min0 = v;
                }
                if (max0 < v)
                {
                    max0 = v;
                }
            }
            crossoverPoint0.Child.Parent = crossoverPoint0.Parent; // restore correct parent

            var weights = new List <double>();

            foreach (var node in allowedBranches)
            {
                var    parent = node.Parent;
                var    tree1 = CreateTreeFromNode(random, node, rootSymbol, startSymbol);
                double min1 = 0.0, max1 = 0.0;
                foreach (double v in interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows))
                {
                    if (min1 > v)
                    {
                        min1 = v;
                    }
                    if (max1 < v)
                    {
                        max1 = v;
                    }
                }
                double behavioralDistance = (Math.Abs(min0 - min1) + Math.Abs(max0 - max1)) / 2; // this can be NaN of Infinity because some trees are crazy like exp(exp(exp(...))), we correct that below
                weights.Add(behavioralDistance);
                node.Parent = parent;                                                            // restore correct node parent
            }

            // remove branches with an infinite or NaN behavioral distance
            for (int i = weights.Count - 1; i >= 0; --i)
            {
                if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i]))
                {
                    weights.RemoveAt(i);
                    allowedBranches.RemoveAt(i);
                }
            }
            // check if there are any allowed branches left
            if (allowedBranches.Count == 0)
            {
                return(parent0);
            }

            ISymbolicExpressionTreeNode selectedBranch;
            double sum = weights.Sum();

            if (sum.IsAlmost(0.0) || weights.Count == 1) // if there is only one allowed branch, or if all weights are zero
            {
                selectedBranch = allowedBranches[0];
            }
            else
            {
                for (int i = 0; i != weights.Count; ++i) // normalize and invert values
                {
                    weights[i] = 1 - weights[i] / sum;
                }

                sum = weights.Sum(); // take new sum

                // compute the probabilities (selection weights)
                for (int i = 0; i != weights.Count; ++i)
                {
                    weights[i] /= sum;
                }

#pragma warning disable 612, 618
                selectedBranch = allowedBranches.SelectRandom(weights, random);
#pragma warning restore 612, 618
            }
            Swap(crossoverPoint0, selectedBranch);
            return(parent0);
        }
Пример #3
0
        /// <summary>
        /// Takes two parent individuals P0 and P1.
        /// Randomly choose a node i from the first parent, then get a node j from the second parent that matches the semantic similarity criteria.
        /// </summary>
        public static ISymbolicExpressionTree Cross(IRandom random, ISymbolicExpressionTree parent0, ISymbolicExpressionTree parent1, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
                                                    T problemData, List <int> rows, int maxDepth, int maxLength, DoubleRange range)
        {
            var crossoverPoints0 = new List <CutPoint>();

            parent0.Root.ForEachNodePostfix((n) => {
                if (n.Parent != null && n.Parent != parent0.Root)
                {
                    crossoverPoints0.Add(new CutPoint(n.Parent, n));
                }
            });

            var crossoverPoint0 = crossoverPoints0.SampleRandom(random);
            int level           = parent0.Root.GetBranchLevel(crossoverPoint0.Child);
            int length          = parent0.Root.GetLength() - crossoverPoint0.Child.GetLength();

            var allowedBranches = new List <ISymbolicExpressionTreeNode>();

            parent1.Root.ForEachNodePostfix((n) => {
                if (n.Parent != null && n.Parent != parent1.Root)
                {
                    if (n.GetDepth() + level <= maxDepth && n.GetLength() + length <= maxLength && crossoverPoint0.IsMatchingPointType(n))
                    {
                        allowedBranches.Add(n);
                    }
                }
            });

            if (allowedBranches.Count == 0)
            {
                return(parent0);
            }

            var dataset = problemData.Dataset;

            // create symbols in order to improvize an ad-hoc tree so that the child can be evaluated
            var           rootSymbol       = new ProgramRootSymbol();
            var           startSymbol      = new StartSymbol();
            var           tree0            = CreateTreeFromNode(random, crossoverPoint0.Child, rootSymbol, startSymbol);
            List <double> estimatedValues0 = interpreter.GetSymbolicExpressionTreeValues(tree0, dataset, rows).ToList();

            crossoverPoint0.Child.Parent = crossoverPoint0.Parent; // restore parent
            ISymbolicExpressionTreeNode selectedBranch = null;

            // pick the first node that fulfills the semantic similarity conditions
            foreach (var node in allowedBranches)
            {
                var           parent           = node.Parent;
                var           tree1            = CreateTreeFromNode(random, node, startSymbol, rootSymbol); // this will affect node.Parent
                List <double> estimatedValues1 = interpreter.GetSymbolicExpressionTreeValues(tree1, dataset, rows).ToList();
                node.Parent = parent;                                                                       // restore parent

                OnlineCalculatorError errorState;
                double ssd = OnlineMeanAbsoluteErrorCalculator.Calculate(estimatedValues0, estimatedValues1, out errorState);

                if (range.Start <= ssd && ssd <= range.End)
                {
                    selectedBranch = node;
                    break;
                }
            }

            // perform the actual swap
            if (selectedBranch != null)
            {
                Swap(crossoverPoint0, selectedBranch);
            }
            return(parent0);
        }