Пример #1
0
        public void CalculatePlanetApparentPlaceLP()
        {
            double jde = 2448976.5;

            double         tau = 0;
            CrdsEcliptical ecl = null;

            for (int i = 0; i < 2; i++)
            {
                CrdsHeliocentrical hEarth = PlanetPositions.GetPlanetCoordinates(3, jde - tau, highPrecision: false);

                CrdsHeliocentrical hVenus = PlanetPositions.GetPlanetCoordinates(2, jde - tau, highPrecision: false);

                var rect = hVenus.ToRectangular(hEarth);

                ecl = rect.ToEcliptical();

                tau = PlanetPositions.LightTimeEffect(ecl.Distance);
            }

            // Correction for FK5 system
            CrdsEcliptical corr = PlanetPositions.CorrectionForFK5(jde, ecl);

            ecl += corr;
            ecl += Nutation.NutationEffect(16.749 / 3600.0);

            CrdsEquatorial eq = ecl.ToEquatorial(23.439669);

            Assert.AreEqual(new HMS("21h 04m 41.459s"), new HMS(eq.Alpha));
            Assert.AreEqual(new DMS("-18* 53' 16.66''"), new DMS(eq.Delta));
        }
Пример #2
0
        /// <summary>
        /// Gets heliocentrical coordinates of planet
        /// </summary>
        private CrdsHeliocentrical Planet_Heliocentrical(SkyContext c, int p)
        {
            // final difference to stop iteration process, 1 second of time
            double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

            // time taken by the light to reach the Earth
            double tau = 0;

            // previous value of tau to calculate the difference
            double tau0 = 1;

            // Heliocentrical coordinates of planet
            CrdsHeliocentrical planetHeliocentrial = null;

            // Heliocentrical coordinates of Earth
            CrdsHeliocentrical hEarth = c.Get(Earth_Heliocentrial);

            // Iterative process to find heliocentrical coordinates of planet
            while (Math.Abs(tau - tau0) > deltaTau)
            {
                // Heliocentrical coordinates of planet
                planetHeliocentrial = PlanetPositions.GetPlanetCoordinates(p, c.JulianDay - tau, !c.PreferFastCalculation);

                // Ecliptical coordinates of planet
                var planetEcliptical = planetHeliocentrial.ToRectangular(hEarth).ToEcliptical();

                tau0 = tau;
                tau  = PlanetPositions.LightTimeEffect(planetEcliptical.Distance);
            }

            return(planetHeliocentrial);
        }
Пример #3
0
        public void CalculatePlanetApparentPlaceHP()
        {
            double jde = 2448976.5;

            // time taken by the light to reach the Earth
            double tau = 0;

            // previous value of tau to calculate the difference
            double tau0 = 1;

            // final difference to stop iteration process, 1 second of time
            double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

            // Ecliptical coordinates of Venus
            CrdsEcliptical ecl = null;

            // Iterative process to find ecliptical coordinates of Venus
            while (Math.Abs(tau - tau0) > deltaTau)
            {
                // Heliocentrical coordinates of Earth
                var hEarth = PlanetPositions.GetPlanetCoordinates(3, jde - tau, highPrecision: true);

                // Heliocentrical coordinates of Venus
                var hVenus = PlanetPositions.GetPlanetCoordinates(2, jde - tau, highPrecision: true);

                // Ecliptical coordinates of Venus
                ecl = hVenus.ToRectangular(hEarth).ToEcliptical();

                tau0 = tau;
                tau  = PlanetPositions.LightTimeEffect(ecl.Distance);
            }

            // Correction for FK5 system
            ecl += PlanetPositions.CorrectionForFK5(jde, ecl);

            // Take nutation into account
            ecl += Nutation.NutationEffect(16.749 / 3600.0);

            // Apparent equatorial coordinates of Venus
            CrdsEquatorial eq = ecl.ToEquatorial(23.439669);

            Assert.AreEqual(new HMS("21h 04m 41.454s"), new HMS(eq.Alpha));
            Assert.AreEqual(new DMS("-18* 53' 16.84''"), new DMS(eq.Delta));
        }
Пример #4
0
        /// <summary>
        /// Gets rectangular heliocentric coordinates of minor body
        /// </summary>
        protected CrdsRectangular RectangularH(SkyContext c, T body)
        {
            // final difference to stop iteration process, 1 second of time
            double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

            // time taken by the light to reach the Earth
            double tau = 0;

            // previous value of tau to calculate the difference
            double tau0 = 1;

            // Rectangular coordinates of minor body
            CrdsRectangular rect = null;

            // Rectangular coordinates of the Sun
            var sun = c.Get(SunRectangular);

            // Orbital elements
            var orbit = c.Get(OrbitalElements, body);

            double ksi = 0, eta = 0, zeta = 0, Delta = 0;

            int count = 0;

            // Iterative process to find rectangular coordinates of minor body
            while (Math.Abs(tau - tau0) > deltaTau && count++ < 100)
            {
                // Rectangular coordinates of minor body
                rect = MinorBodyPositions.GetRectangularCoordinates(orbit, c.JulianDay - tau, c.Epsilon);

                ksi  = sun.X + rect.X;
                eta  = sun.Y + rect.Y;
                zeta = sun.Z + rect.Z;

                // Distance to the Earth
                Delta = Math.Sqrt(ksi * ksi + eta * eta + zeta * zeta);

                tau0 = tau;
                tau  = PlanetPositions.LightTimeEffect(Delta);
            }

            return(rect);
        }
Пример #5
0
        /// <summary>
        /// Calculates heliocentrical coordinates of Pluto for J2000 epoch
        /// </summary>
        private CrdsHeliocentrical Pluto_HeliocentricalJ2000(SkyContext c)
        {
            // final difference to stop iteration process, 1 second of time
            double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

            // time taken by the light to reach the Earth
            double tau = 0;

            // previous value of tau to calculate the difference
            double tau0 = 1;

            // Sun rectangular coordinates, J2000.0 epoch
            CrdsRectangular rSun = c.Get(Sun_RectangularJ2000);

            // Heliocentrical coordinates of Pluto
            CrdsHeliocentrical plutoHeliocentrial = null;

            // Iterative process to find heliocentrical coordinates of planet
            while (Math.Abs(tau - tau0) > deltaTau)
            {
                // Heliocentrical coordinates of Pluto
                plutoHeliocentrial = PlutoPosition.Position(c.JulianDay - tau);

                // Rectangular heliocentrical coordinates of Pluto
                CrdsRectangular rPluto = new CrdsEcliptical(plutoHeliocentrial.L, plutoHeliocentrial.B, plutoHeliocentrial.R).ToRectangular(epsilonJ2000);

                double x    = rPluto.X + rSun.X;
                double y    = rPluto.Y + rSun.Y;
                double z    = rPluto.Z + rSun.Z;
                double dist = Math.Sqrt(x * x + y * y + z * z);

                tau0 = tau;
                tau  = PlanetPositions.LightTimeEffect(dist);
            }

            return(plutoHeliocentrial);
        }
        private void DoTest(CrdsGeographical location, OrbitalElements oe, string testData, double errorR, double errorEq)
        {
            Regex regex = new Regex("^(\\S+)\\s+(\\S+)\\s+(\\S+)\\s+(\\S+)\\s+(\\S+ \\S+ \\S+) (\\S+ \\S+ \\S+)$");

            string[] lines = testData.Split('\n');
            foreach (string line in lines)
            {
                string dataLine = line.Trim();
                if (!string.IsNullOrEmpty(dataLine))
                {
                    var    match = regex.Match(dataLine);
                    double jd    = double.Parse(match.Groups[1].Value, CultureInfo.InvariantCulture);
                    double X     = double.Parse(match.Groups[2].Value, CultureInfo.InvariantCulture);
                    double Y     = double.Parse(match.Groups[3].Value, CultureInfo.InvariantCulture);
                    double Z     = double.Parse(match.Groups[4].Value, CultureInfo.InvariantCulture);
                    string ra    = match.Groups[5].Value;
                    string dec   = match.Groups[6].Value;

                    var eqTest = new CrdsEquatorial(new HMS(ra), new DMS(dec));

                    var nutation = Nutation.NutationElements(jd);

                    var aberration = Aberration.AberrationElements(jd);

                    // True obliquity
                    double epsilon = Date.TrueObliquity(jd, nutation.deltaEpsilon);

                    // final difference to stop iteration process, 1 second of time
                    double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

                    // time taken by the light to reach the Earth
                    double tau = 0;

                    // previous value of tau to calculate the difference
                    double tau0 = 1;

                    // Rectangular coordinates of minor body
                    CrdsRectangular r = null;

                    // Rectangular coordinates of the Sun
                    var sun = SunRectangular(jd, epsilon);

                    // Distance to the Earth
                    double Delta = 0;

                    // Iterative process to find rectangular coordinates of minor body
                    while (Math.Abs(tau - tau0) > deltaTau)
                    {
                        // Rectangular coordinates of minor body
                        r = MinorBodyPositions.GetRectangularCoordinates(oe, jd - tau, epsilon);

                        double ksi  = sun.X + r.X;
                        double eta  = sun.Y + r.Y;
                        double zeta = sun.Z + r.Z;

                        // Distance to the Earth
                        Delta = Math.Sqrt(ksi * ksi + eta * eta + zeta * zeta);

                        tau0 = tau;
                        tau  = PlanetPositions.LightTimeEffect(Delta);
                    }

                    // Test heliocentric rectangular coordinates
                    Assert.AreEqual(X, r.X, errorR);
                    Assert.AreEqual(Y, r.Y, errorR);
                    Assert.AreEqual(Z, r.Z, errorR);

                    double x = sun.X + r.X;
                    double y = sun.Y + r.Y;
                    double z = sun.Z + r.Z;

                    double alpha = Angle.ToDegrees(Math.Atan2(y, x));
                    double delta = Angle.ToDegrees(Math.Asin(z / Delta));

                    var eq0 = new CrdsEquatorial(alpha, delta);

                    var theta0 = Date.ApparentSiderealTime(jd, nutation.deltaPsi, epsilon);

                    var parallax = PlanetEphem.Parallax(Delta);

                    var eq = eq0.ToTopocentric(location, theta0, parallax);

                    // Test equatorial coordinates
                    Assert.AreEqual(eqTest.Alpha, eq.Alpha, errorEq / 3600.0);
                    Assert.AreEqual(eqTest.Delta, eq.Delta, errorEq / 3600.0);
                }
            }
        }
Пример #7
0
        public void Position()
        {
            // Mean obliquity of the ecliptic for J2000.0 epoch
            const double epsilonJ2000 = 23.4392912510;

            double jd   = 2448908.5;
            double tau  = 0;
            double tau0 = 1;

            int iteration = 1;

            // final difference to stop iteration process, 1 second of time
            double deltaTau = TimeSpan.FromSeconds(1).TotalDays;

            CrdsHeliocentrical posPluto = null;
            CrdsHeliocentrical hEarth   = null;

            while (Math.Abs(tau - tau0) > deltaTau)
            {
                posPluto = PlutoPosition.Position(jd - tau);

                if (iteration == 1)
                {
                    Assert.AreEqual(232.74071, posPluto.L, 1e-5);
                    Assert.AreEqual(14.58782, posPluto.B, 1e-5);
                    Assert.AreEqual(29.711111, posPluto.R, 1e-6);
                }
                else if (iteration == 2)
                {
                    Assert.AreEqual(232.73949, posPluto.L, 1e-5);
                    Assert.AreEqual(14.58801, posPluto.B, 1e-5);
                    Assert.AreEqual(29.711094, posPluto.R, 1e-6);
                }

                // get Earth coordinates
                hEarth = PlanetPositions.GetPlanetCoordinates(3, jd, highPrecision: false, epochOfDate: false);

                // transform to ecliptical coordinates of the Sun
                CrdsEcliptical eclSun = new CrdsEcliptical(Angle.To360(hEarth.L + 180), -hEarth.B, hEarth.R);

                CrdsRectangular rSun = eclSun.ToRectangular(epsilonJ2000);

                if (iteration == 1)
                {
                    Assert.AreEqual(-0.9373959, rSun.X, 1e-6);
                    Assert.AreEqual(-0.3131679, rSun.Y, 1e-6);
                    Assert.AreEqual(-0.1357792, rSun.Z, 1e-6);
                }

                var rPluto = new CrdsEcliptical(posPluto.L, posPluto.B, posPluto.R).ToRectangular(epsilonJ2000);

                if (iteration == 1)
                {
                    Assert.AreEqual(-17.4079141, rPluto.X, 1e-5);
                    Assert.AreEqual(-23.9730804, rPluto.Y, 1e-5);
                    Assert.AreEqual(-2.2374228, rPluto.Z, 1e-5);
                }
                else if (iteration == 2)
                {
                    Assert.AreEqual(-17.4083780, rPluto.X, 1e-5);
                    Assert.AreEqual(-23.9727452, rPluto.Y, 1e-5);
                    Assert.AreEqual(-2.2371797, rPluto.Z, 1e-5);
                }

                double x    = rPluto.X + rSun.X;
                double y    = rPluto.Y + rSun.Y;
                double z    = rPluto.Z + rSun.Z;
                double dist = Math.Sqrt(x * x + y * y + z * z);

                if (iteration == 1)
                {
                    Assert.AreEqual(30.528746, dist, 1e-5);
                }
                else if (iteration == 2)
                {
                    Assert.AreEqual(30.528739, dist, 1e-5);
                }

                tau0 = tau;
                tau  = PlanetPositions.LightTimeEffect(dist);

                if (iteration == 1 || iteration == 2)
                {
                    Assert.AreEqual(0.17632, tau, 1e-5);
                }

                iteration++;
            }

            // should be only 2 iterations
            Assert.AreEqual(2, iteration - 1);

            // ecliptical coordinates of Pluto, J2000.0 epoch
            var eclPluto = posPluto.ToRectangular(hEarth).ToEcliptical();

            // geocentric astrometric equatorial coordinates of Pluto, J2000.0 epoch
            var eqPluto2000 = eclPluto.ToEquatorial(epsilonJ2000);

            // check coordinates with possible error with 1 arcsecond
            Assert.AreEqual(new HMS("15h 31m 43.8s").ToDecimalAngle(), eqPluto2000.Alpha, 1 / 3600.0);
            Assert.AreEqual(new DMS("-4* 27' 29''").ToDecimalAngle(), eqPluto2000.Delta, 1 / 3600.0);
        }