public static void Main() { Console.Write("Enter the password --> "); string password = Console.ReadLine(); Permute perm = new Permute(); Console.Write("It takes {0} seconds.\n", perm.GetSeconds(perm.GetPermutations(password), 500000)); }
public static void PermuteExample() { Console.WriteLine("\nPermute Algorithm:"); var str = "abc"; char[] arr = str.ToCharArray(); Permute.GetPer(arr); }
public ILayer CreateProduct(IKernelDescriptor descriptor) { if (descriptor is Permute) { Permute permute = descriptor as Permute; ILayer layer = new PermuteLayer(permute.Dim1, permute.Dim2, permute.Dim3); return(layer); } return(null); }
static void Main() { Permute p = new Permute(); Console.WriteLine("Please enter N: "); int n = int.Parse(Console.ReadLine()); int[] arr = new int[n]; for (int i = 0; i < arr.Length; i++) { arr[i] = i + 1; } Console.WriteLine(); Console.WriteLine("Permutations: "); p.Setper(arr); }
public Symmetric Extend(int len) { if (len < Size) { throw new ArgumentException("should be larger than size", nameof(len)); } var res = new int[len]; Permute.CopyTo(res, 0); for (int i = Size; i < len; i++) { res[i] = i; } return(new Symmetric(res)); }
static void Main() { Permute perm = new Permute(); int n = int.Parse(Console.ReadLine()); int[] arr = new int[n]; for (int i = 0; i < n; i++) { arr[i] = int.Parse(Console.ReadLine()); } string permArr = string.Join("", arr); char[] permCharArr = permArr.ToCharArray(); perm.setper(permCharArr); }
public void GetPermutationsTest() { List <string> list = new List <string> { "1", "2", "3", "4", "5" }; IEnumerable <IEnumerable <string> > tmp = Permute.GetPermutations(list, list.Count); foreach (IEnumerable <string> s in tmp) { Console.WriteLine(s.ToList()); } int expected = 120; int result = tmp.Count(); Assert.AreEqual(expected, result); }
private List <IKernelDescriptor> ReadDescriptors(JObject model) { List <IKernelDescriptor> dscps = model.SelectToken("descriptors").Select(layer => { IKernelDescriptor descriptor = null; String layerName = (String)layer.SelectToken("layer"); switch (layerName) { case "AvgPooling1D": descriptor = new AvgPooling1D( (int)layer.SelectToken("padding"), (int)layer.SelectToken("stride"), (int)layer.SelectToken("kernel_size")); break; case "GlobalAveragePooling1D": descriptor = new GlobalAvgPooling1D(); break; case "AvgPooling2D": descriptor = new AvgPooling2D((int)layer.SelectToken("padding_vl"), (int)layer.SelectToken("padding_hz"), (int)layer.SelectToken("stride_vl"), (int)layer.SelectToken("stride_hz"), (int)layer.SelectToken("kernel_height"), (int)layer.SelectToken("kernel_width")); break; case "GlobalAveragePooling2D": descriptor = new GlobalAvgPooling2D(); break; case "BatchNormalization": descriptor = new BatchNormalization( (int)layer.SelectToken("epsilon")); break; case "Cropping1D": descriptor = new Cropping1D( (int)layer.SelectToken("trimBegin"), (int)layer.SelectToken("trimEnd")); break; case "Cropping2D": descriptor = new Cropping2D( (int)layer.SelectToken("topTrim"), (int)layer.SelectToken("bottomTrim"), (int)layer.SelectToken("leftTrim"), (int)layer.SelectToken("rightTrim")); break; case "MaxPooling1D": descriptor = new MaxPooling1D( (int)layer.SelectToken("padding"), (int)layer.SelectToken("stride"), (int)layer.SelectToken("kernel_size")); break; case "GlobalMaxPooling1D": descriptor = new GlobalMaxPooling1D(); break; case "MaxPooling2D": descriptor = new MaxPooling2D((int)layer.SelectToken("padding_vl"), (int)layer.SelectToken("padding_hz"), (int)layer.SelectToken("stride_vl"), (int)layer.SelectToken("stride_hz"), (int)layer.SelectToken("kernel_height"), (int)layer.SelectToken("kernel_width")); break; case "GlobalMaxPooling2D": descriptor = new GlobalMaxPooling2D(); break; case "Convolution1D": descriptor = new Convolution1D( (int)layer.SelectToken("padding"), (int)layer.SelectToken("stride"), (int)layer.SelectToken("kernel_size"), (int)layer.SelectToken("kernel_num")); break; case "Convolution2D": descriptor = new Convolution2D((int)layer.SelectToken("padding_vl"), (int)layer.SelectToken("padding_hz"), (int)layer.SelectToken("stride_vl"), (int)layer.SelectToken("stride_hz"), (int)layer.SelectToken("kernel_height"), (int)layer.SelectToken("kernel_width"), (int)layer.SelectToken("kernel_num")); break; case "Dense2D": descriptor = new Dense2D((int)layer.SelectToken("units")); break; case "Input2D": descriptor = new Input2D((int)layer.SelectToken("height"), (int)layer.SelectToken("width"), (int)layer.SelectToken("channel"), (int)layer.SelectToken("batch")); break; case "Bias2D": descriptor = new Bias2D(); break; case "Permute": descriptor = new Permute( (int)layer.SelectToken("dim1"), (int)layer.SelectToken("dim2"), (int)layer.SelectToken("dim3")); break; case "Reshape": descriptor = new Reshape2D( (int)layer.SelectToken("height"), (int)layer.SelectToken("width"), (int)layer.SelectToken("channel"), 1); break; case "RepeatVector": descriptor = new RepeatVector( (int)layer.SelectToken("num")); break; case "SimpleRNN": descriptor = new SimpleRNN( (int)layer.SelectToken("units"), (int)layer.SelectToken("input_dim"), ANR((string)layer.SelectToken("activation"))); break; case "LSTM": descriptor = new LSTM( (int)layer.SelectToken("units"), (int)layer.SelectToken("input_dim"), ANR((string)layer.SelectToken("activation")), ANR((string)layer.SelectToken("rec_act"))); break; case "GRU": descriptor = new GRU( (int)layer.SelectToken("units"), (int)layer.SelectToken("input_dim"), ANR((string)layer.SelectToken("activation")), ANR((string)layer.SelectToken("rec_act"))); break; case "ELu": descriptor = new ELu(1); break; case "HardSigmoid": descriptor = new HardSigmoid(); break; case "ReLu": descriptor = new ReLu(); break; case "Sigmoid": descriptor = new Sigmoid(); break; case "Flatten": descriptor = new Flatten(); break; case "Softmax": descriptor = new Softmax(); break; case "SoftPlus": descriptor = new SoftPlus(); break; case "SoftSign": descriptor = new Softsign(); break; case "TanH": descriptor = new TanH(); break; default: throw new Exception("Unknown layer type!"); } return(descriptor); }).ToList(); return(dscps); }