Пример #1
0
        public string RunPrefMRF(double regularization, double learnRate, int maxEpoch, List <double> quantizer,
                                 int topN = 10)
        {
            // Load OMFDistribution from file
            Dictionary <Tuple <int, int>, List <double> > OMFDistributionByUserItem;

            if (File.Exists(GetDataFileName("PrefOMF_")))
            {
                OMFDistributionByUserItem = Utils.IO <Dictionary <Tuple <int, int>, List <double> > > .LoadObject(GetDataFileName("PrefOMF_"));
            }
            else
            {
                return("Abort, Run OMF first.");
            }

            if (!ReadyForOrdinal)
            {
                GetReadyForOrdinal();
            }
            StringBuilder log = new StringBuilder();

            log.AppendLine(Utils.PrintHeading("PrefMRF: PrefNMF based ORF"));

            // Prediction
            Utils.StartTimer();
            DataMatrix R_predicted_expectations;
            DataMatrix R_predicted_mostlikely;

            // Convert PR_train into user-wise preferences
            DataMatrix R_train_positions = new DataMatrix(PR_train.GetPositionMatrix());

            R_train_positions.Quantization(quantizer[0], quantizer[quantizer.Count - 1] - quantizer[0], quantizer);

            ORF orf = new ORF();

            orf.PredictRatings(R_train_positions, R_unknown, StrongSimilarityIndicatorsByItemPref,
                               OMFDistributionByUserItem, regularization, learnRate, maxEpoch,
                               quantizer.Count, out R_predicted_expectations, out R_predicted_mostlikely);

            log.AppendLine(Utils.StopTimer());

            // Evaluation
            var topNItemsByUser_expectations = ItemRecommendationCore.GetTopNItemsByUser(R_predicted_expectations, topN);

            for (int n = 1; n <= topN; n++)
            {
                log.AppendLine(Utils.PrintValue("NCDG@" + n, NCDG.Evaluate(RelevantItemsByUser,
                                                                           topNItemsByUser_expectations, n).ToString("0.0000")));
            }
            for (int n = 1; n <= topN; n++)
            {
                log.AppendLine(Utils.PrintValue("MAP@" + n, MAP.Evaluate(RelevantItemsByUser, topNItemsByUser_expectations, n).ToString("0.0000")));
            }

            return(log.ToString());
        }
Пример #2
0
        public string RunNMFbasedORF(double regularization, double learnRate,
                                     int maxEpoch, List <double> quantizer, int topN = 0)
        {
            // Load OMFDistribution from file
            Dictionary <Tuple <int, int>, List <double> > OMFDistributionByUserItem;

            if (File.Exists(GetDataFileName("RatingOMF_")))
            {
                OMFDistributionByUserItem = Utils.IO <Dictionary <Tuple <int, int>, List <double> > > .LoadObject(GetDataFileName("RatingOMF_"));
            }
            else
            {
                return("Abort, Run OMF first.");
            }

            if (!ReadyForNumerical)
            {
                GetReadyForNumerical();
            }
            StringBuilder log = new StringBuilder();

            log.AppendLine(Utils.PrintHeading("NMF based ORF"));

            // Prediction
            Utils.StartTimer();
            DataMatrix R_predicted_expectations;
            DataMatrix R_predicted_mostlikely;
            ORF        orf = new ORF();

            orf.PredictRatings(R_train, R_unknown, StrongSimilarityIndicatorsByItemRating,
                               OMFDistributionByUserItem, regularization, learnRate, maxEpoch,
                               quantizer.Count, out R_predicted_expectations, out R_predicted_mostlikely);
            log.AppendLine(Utils.StopTimer());

            // Numerical Evaluation
            log.AppendLine(Utils.PrintValue("RMSE", RMSE.Evaluate(R_test, R_predicted_expectations).ToString("0.0000")));
            log.AppendLine(Utils.PrintValue("MAE", RMSE.Evaluate(R_test, R_predicted_mostlikely).ToString("0.0000")));

            // Top-N Evaluation
            if (topN != 0)
            {
                var topNItemsByUser_expectations = ItemRecommendationCore.GetTopNItemsByUser(R_predicted_expectations, topN);
                for (int n = 1; n <= topN; n++)
                {
                    log.AppendLine(Utils.PrintValue("NCDG@" + n, NCDG.Evaluate(RelevantItemsByUser, topNItemsByUser_expectations, n).ToString("0.0000")));
                }
                for (int n = 1; n <= topN; n++)
                {
                    log.AppendLine(Utils.PrintValue("MAP@" + n, MAP.Evaluate(RelevantItemsByUser, topNItemsByUser_expectations, n).ToString("0.0000")));
                }
            }

            return(log.ToString());
        }